Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tracking a crop disease could save millions of lives

20.08.2008
Scientists have discovered why one of the world's most important agricultural diseases emerged, according to research published in the September issue of the Journal of General Virology.

Maize streak virus (MSV) causes the main virus disease of Africa's most important food crop. By comparing the genome of the virus to those of its less harmful relatives, scientists have discovered how and why MSV became a serious pest and spread so rapidly across Africa.

"Given the fragility of African agriculture and perpetual famine risks with millions of lives at stake, MSV is actually one of the most important plant pathogens worldwide," said Dr Darren Martin from the University of Cape Town in South Africa. "We wanted to learn more about how the virus emerged and spread so we can develop new ways to fight the diseases it causes."

There are many different strains of MSV but only one of these causes a severe disease in maize. The others cause relatively mild infections in other grassy food crops such as wheat, oats and sugarcane. Scientists have known for some time now that the "maize adapted" MSV strain is peculiar; all versions of the virus that have been sampled throughout the entire African continent are genetically almost identical. The researchers looked at strains of the virus that infect natural grasses and compared these to the maize adapted strain. The results show that the maize adapted strain is even more unique than was previously thought.

"We found that the maize adapted virus infects a greater variety of grasses than any of the other MSV strains," said Dr Martin. "The virus appears to be spreading around Africa faster than the other strains too. When we compared the genomes of 11 different strains of MSV, we discovered that lots of genes had been exchanged between the strains in a process called recombination. We also found that every MSV that causes severe disease in maize has descended from an ancestral virus that was the recombinant offspring of two relatively harmless wild grass infecting viruses. This chance recombination event could be the reason MSV has become such a serious problem."

All available information suggests that over 100 years ago, two grass adapted MSVs recombined to produce a new "wide-host range" strain that could infect a greater variety of other plants than its parents. This meant the virus could survive the winters in wild grasses more effectively than its relatives - something that potentially increased the speed at which it spread across Africa. The ability of this recombinant strain to infect many different host species may have also enabled it to rapidly adapt to maize - a process that today has led to its emergence as an economically important crop disease.

"Understanding the chain of events that trigger the emergence of novel pathogens is a major goal of epidemiologists worldwide," said Dr Martin. "There is a lot of circumstantial evidence suggesting how evolutionary processes like recombination might trigger the emergence of a pathogen but there are actually very few well documented examples of this having occurred."

The next step is to carry out rigorous tests to provide more evidence for the specific biological causes of the emergence of MSV. The researchers also hope to develop different genetic strategies to help the crops resist disease. "Comparing important pathogens with their "agriculturally irrelevant" relatives can tell us useful stuff about the pathogens," said Dr Martin. "Knowing that maize adapted MSVs are unusually mobile I hope will prompt scientists to test MSV resistance genes against the large bank of virus strains that we have catalogued from across Africa."

"We are currently testing various resistance strategies, some in an advanced stage of development, using many of the viruses we've sampled. Complex genetic strategies like stacking resistance genes and targeting different virus components that cannot be simultaneously exchanged by recombination might ultimately be the only way to control the disease."

Lucy Goodchild | alfa
Further information:
http://www.sgm.ac.uk

More articles from Agricultural and Forestry Science:

nachricht Raiding the rape field
23.05.2018 | Julius-Maximilians-Universität Würzburg

nachricht New technique reveals details of forest fire recovery
17.05.2018 | DOE/Brookhaven National Laboratory

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Could a particle accelerator using laser-driven implosion become a reality?

24.05.2018 | Physics and Astronomy

Hot cars can hit deadly temperatures in as little as one hour

24.05.2018 | Health and Medicine

Complementing conventional antibiotics

24.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>