Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The betrayal of the aphids

03.06.2014

UC Riverside-led research team shows how a bacterial protein in aphid saliva triggers plant defense against aphids

Aphids are devastating insect pests and cause great losses to agriculture worldwide. These sap-feeding plant pests harbor in their body cavity bacteria, which are essential for the aphids' fecundity and survival. Buchnera, the bacterium, benefits also because it cannot grow outside the aphid.

Aphids on Leaves

This photo shows aphids feeding on leaves.

Credit: Scott Edwards, UC Riverside


This photo shows aphids feeding on a stem.

Credit: Scott Edwards, UC Riverside.

This mutually beneficial relationship is sabotaged, however, by the bacterium which proceeds to betray the aphid, a research team led by scientists at the University of California, Riverside has found.

"Although this betrayal is unintentional, it nevertheless alerts the plant about the aphid's presence and the aphids are unable to reproduce in large numbers," said Isgouhi Kaloshian, a professor of nematology, who led the research project.

"A protein from the bacterium, found in the aphid saliva and likely delivered inside the plant host by the aphid, triggers plant immune responses against the aphid. It seems that the plant immune system targets the bacterium and exploits the strict mutual dependency between the plant and aphid to recognize the aphid as the intruder."

Study results appear online this week in the Proceedings of the National Academy of Sciences.

While feeding, aphids secrete saliva in the plant. To identify the protein composition of the aphid saliva, the researchers collected saliva from more than 100,000 aphids. Using mass spectrometry, they detected 105 proteins. They discovered these proteins were of both aphid and Buchnera origins. One of these Buchnera proteins, GroEL, was found to induce immune responses in plants.

"GroEL was known previously to trigger immunity in animals," said Kaloshian, a member of UC Riverside's Institute for Integrative Genome Biology. "However, our finding that it induces immunity in plants is new. Since most aphids harbor Buchnera, and likely have GroEL in their saliva, this bacterial protein may generally alert plants of the presence of aphids. How it is recognized by plants is still unknown. GroEL can now be exploited to engineer durable resistance of crops against aphids."

According to the researchers, since Buchnera-related bacteria are present in a number of insects (other than aphids), their findings are likely to be broadly applicable to other arthropods. GroEL and additional proteins from insect bacteria probably are delivered to plants through insect saliva and contribute to shaping plant-insect interactions.

"Strikingly, the majority of the aphid salivary proteins predicted for secretion were of unknown function and different from those typically secreted by microbes into plants," Kaloshian said. "However, these aphid salivary proteins, too, serve similar purposes in manipulating plant metabolism. Thus, aphids and microbes seem to have evolved different molecular solutions to achieve the same goals."

Currently, Kaloshian's lab is working on identifying the plant receptor for GroEL that initiates the plant immune response. Her team is also functionally characterizing the aphid salivary proteins with no known function to identify their roles.

"We would like to understand how these proteins are able to modulate host metabolism and identify their host targets," she said.

She was joined in the research by Ritu Chaudhary (first author of the research paper) and Hagop S. Atamian at UC Riverside; and Zhouxin Shen and Steven P. Briggs at UC San Diego. Shen and Briggs performed the mass spectrometry. The researchers used the model plant Arabidopsis in their experiments with the aphids.

###

The research was supported by a grant from the U.S. Department of Agriculture—National Institute of Food and Agriculture to Kaloshian and a grant from the National Science Foundation to Briggs.

The University of California, Riverside is a doctoral research university, a living laboratory for groundbreaking exploration of issues critical to Inland Southern California, the state and communities around the world. Reflecting California's diverse culture, UCR's enrollment has exceeded 21,000 students. The campus opened a medical school in 2013 and has reached the heart of the Coachella Valley by way of the UCR Palm Desert Center. The campus has an annual statewide economic impact of more than $1 billion. A broadcast studio with fiber cable to the AT&T Hollywood hub is available for live or taped interviews. UCR also has ISDN for radio interviews. To learn more, call (951) UCR-NEWS.

Iqbal Pittalwala | Eurek Alert!
Further information:
http://www.ucr.edu

Further reports about: Riverside bacteria bacterium function immune insect mass metabolism microbes proteins saliva salivary

More articles from Agricultural and Forestry Science:

nachricht Climate change: Trade liberalization could buffer economic losses in agriculture
25.08.2016 | Potsdam-Institut für Klimafolgenforschung

nachricht Fungal intruder ante portas!
19.08.2016 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Streamlining accelerated computing for industry

PyFR code combines high accuracy with flexibility to resolve unsteady turbulence problems

Scientists and engineers striving to create the next machine-age marvel--whether it be a more aerodynamic rocket, a faster race car, or a higher-efficiency jet...

Im Focus: X-ray optics on a chip

Waveguides are widely used for filtering, confining, guiding, coupling or splitting beams of visible light. However, creating waveguides that could do the same for X-rays has posed tremendous challenges in fabrication, so they are still only in an early stage of development.

In the latest issue of Acta Crystallographica Section A: Foundations and Advances , Sarah Hoffmann-Urlaub and Tim Salditt report the fabrication and testing of...

Im Focus: Piggyback battery for microchips: TU Graz researchers develop new battery concept

Electrochemists at TU Graz have managed to use monocrystalline semiconductor silicon as an active storage electrode in lithium batteries. This enables an integrated power supply to be made for microchips with a rechargeable battery.

Small electrical gadgets, such as mobile phones, tablets or notebooks, are indispensable accompaniments of everyday life. Integrated circuits in the interiors...

Im Focus: UCI physicists confirm possible discovery of fifth force of nature

Light particle could be key to understanding dark matter in universe

Recent findings indicating the possible discovery of a previously unknown subatomic particle may be evidence of a fifth fundamental force of nature, according...

Im Focus: Wi-fi from lasers

White light from lasers demonstrates data speeds of up to 2 GB/s

A nanocrystalline material that rapidly makes white light out of blue light has been developed by KAUST researchers.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

The energy transition is not possible without Geotechnics

25.08.2016 | Event News

New Ideas for the Shipping Industry

24.08.2016 | Event News

A week of excellence: 22 of the world’s best computer scientists and mathematicians in Heidelberg

12.08.2016 | Event News

 
Latest News

Symmetry crucial for building key biomaterial collagen in the lab

26.08.2016 | Health and Medicine

Volcanic eruption masked acceleration in sea level rise

26.08.2016 | Earth Sciences

Moth takes advantage of defensive compounds in Physalis fruits

26.08.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>