Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The betrayal of the aphids

03.06.2014

UC Riverside-led research team shows how a bacterial protein in aphid saliva triggers plant defense against aphids

Aphids are devastating insect pests and cause great losses to agriculture worldwide. These sap-feeding plant pests harbor in their body cavity bacteria, which are essential for the aphids' fecundity and survival. Buchnera, the bacterium, benefits also because it cannot grow outside the aphid.

Aphids on Leaves

This photo shows aphids feeding on leaves.

Credit: Scott Edwards, UC Riverside


This photo shows aphids feeding on a stem.

Credit: Scott Edwards, UC Riverside.

This mutually beneficial relationship is sabotaged, however, by the bacterium which proceeds to betray the aphid, a research team led by scientists at the University of California, Riverside has found.

"Although this betrayal is unintentional, it nevertheless alerts the plant about the aphid's presence and the aphids are unable to reproduce in large numbers," said Isgouhi Kaloshian, a professor of nematology, who led the research project.

"A protein from the bacterium, found in the aphid saliva and likely delivered inside the plant host by the aphid, triggers plant immune responses against the aphid. It seems that the plant immune system targets the bacterium and exploits the strict mutual dependency between the plant and aphid to recognize the aphid as the intruder."

Study results appear online this week in the Proceedings of the National Academy of Sciences.

While feeding, aphids secrete saliva in the plant. To identify the protein composition of the aphid saliva, the researchers collected saliva from more than 100,000 aphids. Using mass spectrometry, they detected 105 proteins. They discovered these proteins were of both aphid and Buchnera origins. One of these Buchnera proteins, GroEL, was found to induce immune responses in plants.

"GroEL was known previously to trigger immunity in animals," said Kaloshian, a member of UC Riverside's Institute for Integrative Genome Biology. "However, our finding that it induces immunity in plants is new. Since most aphids harbor Buchnera, and likely have GroEL in their saliva, this bacterial protein may generally alert plants of the presence of aphids. How it is recognized by plants is still unknown. GroEL can now be exploited to engineer durable resistance of crops against aphids."

According to the researchers, since Buchnera-related bacteria are present in a number of insects (other than aphids), their findings are likely to be broadly applicable to other arthropods. GroEL and additional proteins from insect bacteria probably are delivered to plants through insect saliva and contribute to shaping plant-insect interactions.

"Strikingly, the majority of the aphid salivary proteins predicted for secretion were of unknown function and different from those typically secreted by microbes into plants," Kaloshian said. "However, these aphid salivary proteins, too, serve similar purposes in manipulating plant metabolism. Thus, aphids and microbes seem to have evolved different molecular solutions to achieve the same goals."

Currently, Kaloshian's lab is working on identifying the plant receptor for GroEL that initiates the plant immune response. Her team is also functionally characterizing the aphid salivary proteins with no known function to identify their roles.

"We would like to understand how these proteins are able to modulate host metabolism and identify their host targets," she said.

She was joined in the research by Ritu Chaudhary (first author of the research paper) and Hagop S. Atamian at UC Riverside; and Zhouxin Shen and Steven P. Briggs at UC San Diego. Shen and Briggs performed the mass spectrometry. The researchers used the model plant Arabidopsis in their experiments with the aphids.

###

The research was supported by a grant from the U.S. Department of Agriculture—National Institute of Food and Agriculture to Kaloshian and a grant from the National Science Foundation to Briggs.

The University of California, Riverside is a doctoral research university, a living laboratory for groundbreaking exploration of issues critical to Inland Southern California, the state and communities around the world. Reflecting California's diverse culture, UCR's enrollment has exceeded 21,000 students. The campus opened a medical school in 2013 and has reached the heart of the Coachella Valley by way of the UCR Palm Desert Center. The campus has an annual statewide economic impact of more than $1 billion. A broadcast studio with fiber cable to the AT&T Hollywood hub is available for live or taped interviews. UCR also has ISDN for radio interviews. To learn more, call (951) UCR-NEWS.

Iqbal Pittalwala | Eurek Alert!
Further information:
http://www.ucr.edu

Further reports about: Riverside bacteria bacterium function immune insect mass metabolism microbes proteins saliva salivary

More articles from Agricultural and Forestry Science:

nachricht Farming with forests
23.09.2016 | University of Illinois College of Agricultural, Consumer and Environmental Sciences (ACES)

nachricht Ecological intensification of agriculture
09.09.2016 | Julius-Maximilians-Universität Würzburg

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

Im Focus: Launch of New Industry Working Group for Process Control in Laser Material Processing

At AKL’16, the International Laser Technology Congress held in May this year, interest in the topic of process control was greater than expected. Appropriately, the event was also used to launch the Industry Working Group for Process Control in Laser Material Processing. The group provides a forum for representatives from industry and research to initiate pre-competitive projects and discuss issues such as standards, potential cost savings and feasibility.

In the age of industry 4.0, laser technology is firmly established within manufacturing. A wide variety of laser techniques – from USP ablation and additive...

Im Focus: New laser joining technologies at ‘K 2016’ trade fair

Every three years, the plastics industry gathers at K, the international trade fair for plastics and rubber in Düsseldorf. The Fraunhofer Institute for Laser Technology ILT will also be attending again and presenting many innovative technologies, such as for joining plastics and metals using ultrashort pulse lasers. From October 19 to 26, you can find the Fraunhofer ILT at the joint Fraunhofer booth SC01 in Hall 7.

K is the world’s largest trade fair for the plastics and rubber industry. As in previous years, the organizers are expecting 3,000 exhibitors and more than...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

ICPE in Graz for the seventh time

20.09.2016 | Event News

Using mathematical models to understand our brain

16.09.2016 | Event News

 
Latest News

Chains of nanogold – forged with atomic precision

23.09.2016 | Life Sciences

New leukemia treatment offers hope

23.09.2016 | Health and Medicine

Self-assembled nanostructures hit their target

23.09.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>