Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Taming wild grapes for better wine

14.10.2010
When you think about "wine country," Illinois may not be the first state that comes to mind. But it's actually big business on the prairie. There are 90 wineries licensed in Illinois and 1,500 acres of wine grapes.

One acre of wine grapes can bring as much as $8,000 in sales, though more commonly it's $3,000 to $5,000. The largest wineries in Illinois produce 90,000 gallons per year, while many produce 3,000 to 10,000 per year.

"In many cases, growing wine grapes is supplementary to the producer's entire farming operation. The break-even point for wineries is about 10,000 gallons to make it a full-time business," said Bill Shoemaker, superintendent at the St. Charles Horticulture Research Center.

Shoemaker works with other University of Illinois researchers to conduct grape research at the Center. For one of his latest projects, he is crossing wild grapes with proven wine grape varieties to develop a good wine grape that can withstand the cooler northern Illinois weather.

"There are wild grapes growing along the roadside on I-57," Shoemaker said. "The interstate grapes root easily with no further help. Their native genetics means that they have already adapted to this climate but they aren't good for eating or wine-making. We're crossing them with European grapes that have high quality to create new varieties that will grow in our climate and be a good wine grape."

Unfortunately, the wild grapes have poor flavor and low yield. But Shoemaker is looking at three wild grape species that have excellent disease resistance to create breeding lines that will require less use of pesticides. Right now growers sometimes have to spray in order to grow a good wine grape, so this would be a great step forward for the industry.

"There isn't much grape breeding being done to create improved varieties globally. We're working to improve the fruit quality and develop new flavor profiles in wine," he said.

The northern and southern hilly parts of the state have more potential for vineyards, with Galena in Jo Davies County part of a new American viticulture region, said Shoemaker.

Since 1998 grapes, particularly cold-hardy wine grapes, have been a subject of research at the University of Illinois St. Charles Horticulture Research Center. The research was initiated by U of I scientists Robert Skirvin and Alan Otterbacher with a trial of 26 grape varieties planted on a southwest-facing slope – Shoemaker noted that it was the only southwest-facing slope available in the area.

Today Shoemaker conducts research at the St. Charles Center on cultivar evaluation, cultural research, including Integrated Pest Management, and breeding new varieties of grapes.

"Cultural practices are all the methods growers use to manage the grape crop such as pest management" Shoemaker said. "Grapes are popular with many pests. There are insect challenges at every point in the growing season, especially during harvest. There are also several fungal diseases that can infect current varieties, and weeds, particularly perennial weeds such as Canada thistle, are constantly challenging growers and their grape crops."

Perhaps worst of all are the animals that love to eat grapes, Shoemaker said. Birds can decimate vineyards. At the St. Charles Center, Shoemaker manages a 1-acre vineyard of Frontenac grape which was established as a research platform in 2006. "We knew we needed a vineyard dedicated to studying the cultural practices growers use, or need to use, to successfully grow grapes for high-quality wine," he said.

On one of the research projects in the Frontenac vineyard Shoemaker is working with U of I researcher Rick Weinzierl on methods to control Japanese beetles. "We are evaluating three pesticide regimens and two cultural controls for the pest. We are also looking at spun-bonded polypropylene row covers over the top of the vines as an exclusion barrier to the beetle. This could be attractive to organic grape growers if there are no negative effects on the vines or fruit development," Shoemaker said.

Weinzierl said they hope to identify reduced-risk insecticides and nonchemical methods, such as the spun-bound polyester covers, that will allow conventional and organic growers to prevent losses to Japanese beetles without too frequent sprays of insecticides that might result in greater residues or toxicity to beneficial insects. "This would result in greater profits for the Illinois wine industry," he said.

Evaluating new grape varieties for their potential use in the grape wine industry is time consuming, Shoemaker said. "The Europeans, especially the French, created thousands of varieties of interspecific hybrids, many of which have never been grown in the Midwest. Most never will, as they were not exported to North America. But many were and some are planted here at St. Charles. We are also evaluating new varieties and breeding lines from other breeding programs at St. Charles so we can identify which have the greatest potential for our industry," Shoemaker said.

Support for this work has been provided by the State of Illinois and the Illinois Grape Growers and Vintners Association (IGGVA) since 2005.

Debra Levey Larson | EurekAlert!
Further information:
http://www.illinois.edu

Further reports about: Grape Japanese beetle Taming fungal disease horticulture wine grapes

More articles from Agricultural and Forestry Science:

nachricht Energy crop production on conservation lands may not boost greenhouse gases
13.03.2017 | Penn State

nachricht How nature creates forest diversity
07.03.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>