Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Tailored' water -- the latest in lawn care

11.07.2014

In Santa Fe, Albuquerque, and other major cities in New Mexico, nearly every public golf course is now watered with treated municipal wastewater rather than precious potable water supplies. Across the U.S. Southwest as a whole, more than 40% of all golf courses receive treated effluent. Reusing the effluent increases the sustainability of golf courses.

Additionally, golf courses and homeowners alike fertilize their lawns during the growing season. The major nutrient in fertilizer is nitrate. A New Mexico State University turfgrass expert has a new vision for even more efficiency.


These are ReNUWIt turfgrass test plots at New Mexico State University. Cool-season tall fescue (top row) and warm-season grasses bottom half. Grasses irrigated with tailored water on right side, plots on the left side are irrigated with potable water and fertilized with calcium nitrate.

Credit: Bernd Leinauer, New Mexico State University

Bernd Leinauer, a turfgrass expert at New Mexico State University, suggests combining "fertigation," drip irrigation, and decentralized water treatment. In a paper published in the journal Crop Science, he and co-author Elena Sevostianova detail their modern-day recipe for a lush, green lawn.

Leinauer says combining the three approaches could solve several issues. Right now, many big New Mexico cities remove nearly all the nitrate from wastewater all the time. That's an expensive and energy-intensive step designed to prevent pollution of surface- and ground- waters. "But from a turf perspective that doesn't make a whole lot of sense," Leinauer says, since golf course managers (and homeowners) end up applying mineral nitrate fertilizers to keep turf thriving.

Fertigation is a method of supplying fertilizers to plants through irrigation water (fertilize and irrigate at the same time). Drip irrigation delivers water directly to plant roots underground, instead of sprinkling plants from above.

In Leinauer's and Sevostianova's vision, a decentralized treatment system at a subdivision would be "tailored" to generate effluent during the summer that contained 15 parts per million (ppm) of the nutrient nitrate. Residents would then use this water to fertigate their lawns. Because drip systems put water directly into the soil, Leinauer says, homeowners wouldn't come in contact with it.

"Why not leave the nitrate in the water?" Leinauer asks, "Then the effluent already contains a fertilizer that the golf course operator [or homeowner] doesn't have to buy" or manage. The tailored water from the decentralized treatment system makes this feasible. "The overall idea is to combine subsurface, drip irrigation with tailored water: water with nutrient levels tailored for the summer versus the winter."

Will re-using this high-nitrate content water cause problems? Will the nitrate seep into the subsoil, and eventually to groundwater? Leinauer is now studying this at a test facility.

So far, results are good. Turf plots drip-irrigated with tailored water are just as green and healthy as those receiving potable water and mineral fertilizers, Leinauer says. The researchers also see little evidence of greater nitrate loss from the fertigated, drip-irrigated plots.

Still, he cautions, the results are preliminary and there are other challenges to address. For example, wastewater effluent tends to be high in salt. These problems must be solved, though, as water supplies continue to decline. In New Mexico, for example, demands on potable water from agriculture and a growing populace are so great that "basically the only water left for the landscape is treated effluent," Leinauer says. But the issue is hardly unique to his region. Leinauer hopes researchers around the country will embark on similar studies.

"We're doing our part here in the Southwest, but our region is completely different from, let's say, New England, or the Midwest," he says. "So, these questions need to be investigated more thoroughly on a regional basis."

###

To access the paper, visit: doi: 10.2135/cropsci2014.01.0014

Susan Fisk | Eurek Alert!
Further information:
http://www.agronomy.org/

Further reports about: Agronomy Wastewater crop science fertilizer nitrate nutrient turfgrass

More articles from Agricultural and Forestry Science:

nachricht Four newly-identified genes could improve rice
27.06.2016 | Kobe University

nachricht Better soil data key for future food security
21.06.2016 | International Institute for Applied Systems Analysis (IIASA)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Thousands on one chip: New Method to study Proteins

Since the completion of the human genome an important goal has been to elucidate the function of the now known proteins: a new molecular method enables the investigation of the function for thousands of proteins in parallel. Applying this new method, an international team of researchers with leading participation of the Technical University of Munich (TUM) was able to identify hundreds of previously unknown interactions among proteins.

The human genome and those of most common crops have been decoded for many years. Soon it will be possible to sequence your personal genome for less than 1000...

Im Focus: Optical lenses, hardly larger than a human hair

3D printing enables the smalles complex micro-objectives

3D printing revolutionized the manufacturing of complex shapes in the last few years. Using additive depositing of materials, where individual dots or lines...

Im Focus: Flexible OLED applications arrive

R2D2, a joint project to analyze and development high-TRL processes and technologies for manufacture of flexible organic light-emitting diodes (OLEDs) funded by the German Federal Ministry of Education and Research (BMBF) has been successfully completed.

In contrast to point light sources like LEDs made of inorganic semiconductor crystals, organic light-emitting diodes (OLEDs) are light-emitting surfaces. Their...

Im Focus: Unexpected flexibility found in odorant molecules

High resolution rotational spectroscopy reveals an unprecedented number of conformations of an odorant molecule – a new world record!

In a recent publication in the journal Physical Chemistry Chemical Physics, researchers from the Max Planck Institute for the Structure and Dynamics of Matter...

Im Focus: 3-D printing produces cartilage from strands of bioink

Strands of cow cartilage substitute for ink in a 3D bioprinting process that may one day create cartilage patches for worn out joints, according to a team of engineers. "Our goal is to create tissue that can be used to replace large amounts of worn out tissue or design patches," said Ibrahim T. Ozbolat, associate professor of engineering science and mechanics. "Those who have osteoarthritis in their joints suffer a lot. We need a new alternative treatment for this."

Cartilage is a good tissue to target for scale-up bioprinting because it is made up of only one cell type and has no blood vessels within the tissue. It is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Quantum technologies to revolutionise 21st century - Nobel Laureates discuss at Lindau

30.06.2016 | Event News

International Conference ‘GEO BON’ Wants to Close Knowledge Gaps in Global Biodiversity

28.06.2016 | Event News

ERES 2016: The largest conference in the European real estate industry

09.06.2016 | Event News

 
Latest News

Modeling NAFLD with human pluripotent stem cell derived immature hepatocyte like cells

30.06.2016 | Health and Medicine

Rice University lab runs crowd-sourced competition to create 'big data' diagnostic tools

30.06.2016 | Life Sciences

A drop of water as a model for the interplay of adhesion and stiction

30.06.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>