Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sun or shade: Pecan leaves' photosynthetic light response evaluated

05.11.2009
New study provides vital information for commercial pecan operations

Pecan, the most valuable nut tree native to North America, is native from northern Illinois and southeastern Iowa to the Gulf Coast of the United States, where it grows abundantly along the Mississippi River, the rivers of central and eastern Oklahoma, and Texas. Popularity and consumer demand for pecans has increased the cultivation of pecan trees to other areas, while commercial production has expanded into many regions of the United States and Mexico.

Effective management of the tree canopy is of vital interest to pecan growers. Pecan trees require careful canopy management to avoid self-shading and to maintain productivity. Leaves of pecan trees typically intercept 65% to 70% of available sunlight with up to 95% light interception in overcrowded, unpruned orchards; less light naturally affects photosynthesis. To improve the amount of light penetration, pecan growers commonly use pruning techniques to increase photosynthesis and flowering on trees. To date, however, little information has been available to growers about the change in photosynthesis activity of pecan leaves throughout the growing season.

Leonardo Lombardini, Hermann Restrepo-Diaz, and Astrid Volder of Texas A&M University's Department of Horticultural Sciences published the results of an experiment using pecan tree cultivars in a recent issue of the Journal of the American Society for Horticultural Science. According to Lombardini and collaborators, the objective of the experiment was to quantify the effects of differences in light intensity on the "morphological characteristics and seasonal physiological performance of sun and shade leaves of field-grown pecan trees".

The experiment was conducted during the 2007 growing season at Texas A&M University. The cultivars used for the research, 'Pawnee' and 'Stuart', were chosen because of their rank as two of the most important pecan varieties for commercial growers.

Treatments were established according to the leaf type (sun or shade leaves) and cultivar. Sun leaves were growing on exterior portions of the tree canopy and were exposed to full sunlight for most of the day (southern exposure). Shade leaves were growing in interior parts of the tree canopy.

The study revealed that pecan shade leaves exposed to saturating radiation are about half as effective as sun leaves in assimilating CO2. Light saturation points were lower for shade leaves and steadily increased as the season progressed for both leaf types. The research showed that late-season photosynthetic capacity was maintained in shade leaves, whereas it was reduced to about 60% in sun leaves.

The authors noted that the results of the research may explain why pecan trees can tolerate severe hedging-type pruning and still maintain high productivity in areas characterized by relatively high light regions (such as the southwestern United States and east-central Australia). The authors explained that "the reduction of canopy size caused by hedging likely increases the ratio of sun-exposed leaves to shaded leaves, thus boosting carbon gain per unit leaf area".

Especially noteworthy is the autumn assimilation drop in sun leaves, without a corresponding assimilation drop in shade leaves, which the authors call "a significant finding".

This study provides baseline information relevant to improving management of the orchard light environment, and can be used by commercial pecan producers for developing new, effective canopy and crop management practices.

The complete study and abstract are available on the ASHS Journal of the American Society for Horticultural Science electronic journal web site: http://journal.ashspublications.org/cgi/content/abstract/134/3/372

Founded in 1903, the American Society for Horticultural Science (ASHS) is the largest organization dedicated to advancing all facets of horticultural research, education, and application.

Michael W. Neff | EurekAlert!
Further information:
http://www.ashs.org

More articles from Agricultural and Forestry Science:

nachricht New insight into why Pierce's disease is so deadly to grapevines
11.06.2018 | University of California - Davis

nachricht Where are Europe’s last primary forests?
29.05.2018 | Humboldt-Universität zu Berlin

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Novel method for investigating pore geometry in rocks

18.06.2018 | Earth Sciences

Diamond watch components

18.06.2018 | Process Engineering

New type of photosynthesis discovered

18.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>