Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sun or shade: Pecan leaves' photosynthetic light response evaluated

05.11.2009
New study provides vital information for commercial pecan operations

Pecan, the most valuable nut tree native to North America, is native from northern Illinois and southeastern Iowa to the Gulf Coast of the United States, where it grows abundantly along the Mississippi River, the rivers of central and eastern Oklahoma, and Texas. Popularity and consumer demand for pecans has increased the cultivation of pecan trees to other areas, while commercial production has expanded into many regions of the United States and Mexico.

Effective management of the tree canopy is of vital interest to pecan growers. Pecan trees require careful canopy management to avoid self-shading and to maintain productivity. Leaves of pecan trees typically intercept 65% to 70% of available sunlight with up to 95% light interception in overcrowded, unpruned orchards; less light naturally affects photosynthesis. To improve the amount of light penetration, pecan growers commonly use pruning techniques to increase photosynthesis and flowering on trees. To date, however, little information has been available to growers about the change in photosynthesis activity of pecan leaves throughout the growing season.

Leonardo Lombardini, Hermann Restrepo-Diaz, and Astrid Volder of Texas A&M University's Department of Horticultural Sciences published the results of an experiment using pecan tree cultivars in a recent issue of the Journal of the American Society for Horticultural Science. According to Lombardini and collaborators, the objective of the experiment was to quantify the effects of differences in light intensity on the "morphological characteristics and seasonal physiological performance of sun and shade leaves of field-grown pecan trees".

The experiment was conducted during the 2007 growing season at Texas A&M University. The cultivars used for the research, 'Pawnee' and 'Stuart', were chosen because of their rank as two of the most important pecan varieties for commercial growers.

Treatments were established according to the leaf type (sun or shade leaves) and cultivar. Sun leaves were growing on exterior portions of the tree canopy and were exposed to full sunlight for most of the day (southern exposure). Shade leaves were growing in interior parts of the tree canopy.

The study revealed that pecan shade leaves exposed to saturating radiation are about half as effective as sun leaves in assimilating CO2. Light saturation points were lower for shade leaves and steadily increased as the season progressed for both leaf types. The research showed that late-season photosynthetic capacity was maintained in shade leaves, whereas it was reduced to about 60% in sun leaves.

The authors noted that the results of the research may explain why pecan trees can tolerate severe hedging-type pruning and still maintain high productivity in areas characterized by relatively high light regions (such as the southwestern United States and east-central Australia). The authors explained that "the reduction of canopy size caused by hedging likely increases the ratio of sun-exposed leaves to shaded leaves, thus boosting carbon gain per unit leaf area".

Especially noteworthy is the autumn assimilation drop in sun leaves, without a corresponding assimilation drop in shade leaves, which the authors call "a significant finding".

This study provides baseline information relevant to improving management of the orchard light environment, and can be used by commercial pecan producers for developing new, effective canopy and crop management practices.

The complete study and abstract are available on the ASHS Journal of the American Society for Horticultural Science electronic journal web site: http://journal.ashspublications.org/cgi/content/abstract/134/3/372

Founded in 1903, the American Society for Horticultural Science (ASHS) is the largest organization dedicated to advancing all facets of horticultural research, education, and application.

Michael W. Neff | EurekAlert!
Further information:
http://www.ashs.org

More articles from Agricultural and Forestry Science:

nachricht New data unearths pesticide peril in beehives
21.04.2017 | Cornell University

nachricht New rice fights off drought
04.04.2017 | RIKEN

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>