Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sun or shade: Pecan leaves' photosynthetic light response evaluated

05.11.2009
New study provides vital information for commercial pecan operations

Pecan, the most valuable nut tree native to North America, is native from northern Illinois and southeastern Iowa to the Gulf Coast of the United States, where it grows abundantly along the Mississippi River, the rivers of central and eastern Oklahoma, and Texas. Popularity and consumer demand for pecans has increased the cultivation of pecan trees to other areas, while commercial production has expanded into many regions of the United States and Mexico.

Effective management of the tree canopy is of vital interest to pecan growers. Pecan trees require careful canopy management to avoid self-shading and to maintain productivity. Leaves of pecan trees typically intercept 65% to 70% of available sunlight with up to 95% light interception in overcrowded, unpruned orchards; less light naturally affects photosynthesis. To improve the amount of light penetration, pecan growers commonly use pruning techniques to increase photosynthesis and flowering on trees. To date, however, little information has been available to growers about the change in photosynthesis activity of pecan leaves throughout the growing season.

Leonardo Lombardini, Hermann Restrepo-Diaz, and Astrid Volder of Texas A&M University's Department of Horticultural Sciences published the results of an experiment using pecan tree cultivars in a recent issue of the Journal of the American Society for Horticultural Science. According to Lombardini and collaborators, the objective of the experiment was to quantify the effects of differences in light intensity on the "morphological characteristics and seasonal physiological performance of sun and shade leaves of field-grown pecan trees".

The experiment was conducted during the 2007 growing season at Texas A&M University. The cultivars used for the research, 'Pawnee' and 'Stuart', were chosen because of their rank as two of the most important pecan varieties for commercial growers.

Treatments were established according to the leaf type (sun or shade leaves) and cultivar. Sun leaves were growing on exterior portions of the tree canopy and were exposed to full sunlight for most of the day (southern exposure). Shade leaves were growing in interior parts of the tree canopy.

The study revealed that pecan shade leaves exposed to saturating radiation are about half as effective as sun leaves in assimilating CO2. Light saturation points were lower for shade leaves and steadily increased as the season progressed for both leaf types. The research showed that late-season photosynthetic capacity was maintained in shade leaves, whereas it was reduced to about 60% in sun leaves.

The authors noted that the results of the research may explain why pecan trees can tolerate severe hedging-type pruning and still maintain high productivity in areas characterized by relatively high light regions (such as the southwestern United States and east-central Australia). The authors explained that "the reduction of canopy size caused by hedging likely increases the ratio of sun-exposed leaves to shaded leaves, thus boosting carbon gain per unit leaf area".

Especially noteworthy is the autumn assimilation drop in sun leaves, without a corresponding assimilation drop in shade leaves, which the authors call "a significant finding".

This study provides baseline information relevant to improving management of the orchard light environment, and can be used by commercial pecan producers for developing new, effective canopy and crop management practices.

The complete study and abstract are available on the ASHS Journal of the American Society for Horticultural Science electronic journal web site: http://journal.ashspublications.org/cgi/content/abstract/134/3/372

Founded in 1903, the American Society for Horticultural Science (ASHS) is the largest organization dedicated to advancing all facets of horticultural research, education, and application.

Michael W. Neff | EurekAlert!
Further information:
http://www.ashs.org

More articles from Agricultural and Forestry Science:

nachricht Cascading use is also beneficial for wood
11.12.2017 | Technische Universität München

nachricht The future of crop engineering
08.12.2017 | Max-Planck-Institut für Biochemie

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>