Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Study Sheds Light on Debate Over Organic vs. Conventional Agriculture

27.04.2012
Can organic agriculture feed the world?

Although organic techniques may not be able to do the job alone, they do have an important role to play in feeding a growing global population while minimizing environmental damage, according to researchers at McGill University and the University of Minnesota.

A new study published in Nature concludes that crop yields from organic farming are generally lower than from conventional agriculture. That is particularly true for cereals, which are staples of the human diet – yet the yield gap is much less significant for certain crops, and under certain growing conditions, according to the researchers.

The study, which represents a comprehensive analysis of the current scientific literature on organic-to-conventional yield comparisons, aims to shed light on the often heated debate over organic versus conventional farming. Some people point to conventional agriculture as a big environmental threat that undercuts biodiversity and water resources, while releasing greenhouse gases. Others argue that large-scale organic farming would take up more land and make food unaffordable for most of the world’s poor and hungry.

“To achieve sustainable food security we will likely need many different techniques – including organic, conventional, and possible ‘hybrid’ systems – to produce more food at affordable prices, ensure livelihoods to farmers, and reduce the environmental costs of agriculture,” the researchers conclude.

Overall, organic yields are 25% lower than conventional, the study finds. The difference varies widely across crop types and species, however. Yields of legumes and perennials (such as soybeans and fruits), for example, are much closer to those of conventional crops, according to the study, conducted by doctoral student Verena Seufert and Geography professor Navin Ramankutty of McGill and Prof. Jonathan Foley of the University of Minnesota’s Institute on the Environment.

What’s more, when best management practices are used for organic crops, overall yields are just 13% lower than conventional levels. “These results suggest that today’s organic systems may nearly rival conventional yields in some cases – with particular crop types, growing conditions and management practices – but often they do not,” the researchers write. Improvements in organic management techniques, or adoption of organic agriculture under environmental conditions where it performs best, may help close the yield gap, they indicate.

“Our study indicates that organically fertilized systems might require higher nitrogen inputs to achieve high yields as organic nitrogen is less readily available to crops. In some cases, organic farmers may therefore benefit by making limited use of chemical fertilizers instead of relying only on manure to supply nitrogen to their crops,” Seufert says. “At the same time, conventional agriculture can learn from successful organic systems and implement practices that have shown environmental benefits, such as increased crop diversity and use of crop residues.”

Yields are only part of a set of economic, social and environmental factors that should be considered when gauging the benefits of different farming systems, the researchers note. “Maybe people are asking the wrong question,” Prof Ramankutty says. “Instead of asking if food is organically grown, maybe we should be asking if it’s sustainably grown.”

The results point to a need to get beyond the black-and-white, ideological debates that often pit advocates of organic and local foods against proponents of conventional agriculture, Prof. Foley adds. “By combining organic and conventional practices in a way that maximizes food production and social good while minimizing adverse environmental impact, we can create a truly sustainable food system.”

Chris Chipello | Newswise Science News
Further information:
http://www.mcgill.ca

More articles from Agricultural and Forestry Science:

nachricht How much drought can a forest take?
20.01.2017 | University of California - Davis

nachricht Plasma-zapping process could yield trans fat-free soybean oil product
02.12.2016 | Purdue University

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>