Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study Predicts Large Regional Changes in Farmland Area

25.03.2011
The effects of climate change and population growth on agricultural land area vary from region to region, according to a new study by University of Illinois researchers.

Regions with relative high latitudes – China, Russia and the U.S. – could see a significant increase in arable land in coming years, but Africa, Europe and India and South America could lose land area.

Civil and environmental engineering professor Ximing Cai and graduate student Xiao Zhang published their findings in the journal Environmental Research Letters.

While most other studies of climate change and agriculture have focused on projected crop yields, the Illinois researchers assessed global and regional land availability. Using international land and climate datasets and remote-sensing land-use maps, they systematically studied worldwide changes in soil temperature and humidity with a resolution of one square kilometer.

"This study presents the main patterns and trends of the distribution of potential arable land and the possible impacts of climate change from a biophysical perspective," Cai said. "The possible gains and losses of arable land in various regions worldwide may generate tremendous impacts in the upcoming decades upon regional and global agricultural commodity production, demand and trade, as well as on the planning and development of agricultural and engineering infrastructures."

Cai and Zhang’s model allowed them to address the many sources of uncertainty in trying to predict climate change, such as levels of greenhouse gas emissions, climate model uncertainty and ambiguity in land-use classification. They applied the model to several projected scenarios to uncover both regional and global trends in land availability.

When considering effects of climate change, residential sprawl as population grows and natural conservation, the global total of potential arable land in all scenarios decreased by the end of the 21st century, by a margin of 0.8 to 4.4 percent. However, much larger changes were predicted regionally. For example, arable land area could increase by 37 to 67 percent in Russia, while Africa could lose up to 18 percent of its farmland.

"Although the magnitudes of the projected changes vary by scenario, the increasing or decreasing trends in arable land area are regionally consistent," Cai said.

Next, the researchers will conduct more detailed regional studies to confirm their global findings. They hope to use their projections to evaluate world food production, demand and trade, and the corresponding implications for policies and investments.

The Energy Bioscience Institute at the U. of I. and the U.S. Department of Agriculture supported this work.
-ea-
Editor’s note: To reach Ximing Cai, call (217) 333-4935; e-mail: xmcai@illinois.edu. The paper, "Climate Change Impacts on Global Agricultural Land Availability," is available online.

Liz Ahlberg | University of Illinois
Further information:
http://www.illinois.edu

More articles from Agricultural and Forestry Science:

nachricht Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli
26.04.2017 | University of the Basque Country

nachricht New data unearths pesticide peril in beehives
21.04.2017 | Cornell University

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>