Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study offers new hope for increasing global food production, reducing environmental impact of agriculture

30.08.2012
Just-released Nature paper shows more strategic use of nutrients and water on a global scale could boost production 45 to 70 percent for most crops

Can we have enough to eat and a healthy environment, too? Yes—if we’re smart about it, suggests a study published in Nature this week by a team of researchers from the University of Minnesota and McGill University in Montreal.

Global demand for food is expected to double by 2050 due to population growth and increased standards of living. To meet this demand, it is often assumed we will need to expand the environmental burden of agriculture. The paper, based on analysis of agricultural data gathered from around the world, offers hope that with more strategic use of fertilizer and water, we could not only dramatically boost global crop yield, but also reduce the adverse environmental impact of agriculture.

“We have often seen these two goals as a trade-off: We could either have more food, or a cleaner environment, not both,” says lead author Nathaniel Mueller, a researcher with the University of Minnesota’s Institute on the Environment and a doctoral student in the College of Food, Agricultural and Natural Resource Sciences. “This study shows that doesn’t have to be the case.”

Mueller and colleagues used management and yield data for 17 major crops to take a big-picture look at how much water and nutrients it would take to bring underperforming farmlands to meet their food production potential. They also looked for places where fertilizer use could be cut down without substantially reducing crop yield. They found:
We could boost production 45 to 70 percent for most crops. The greatest opportunities for yield improvement are found in Eastern Europe, sub-Saharan Africa, East Asia, and South Asia.
Different inputs serve as limiting factors depending on the region and crop. Nutrients, for example, appear to be limiting corn production in Eastern Europe and West Africa and wheat production in Eastern Europe, while nutrients and water appear to limit rice production in Southeast Asia.
Worldwide, we could decrease nitrogen use 28 percent and phosphorus use 38 percent without adversely affecting yields for corn, wheat and rice. China stands out as a hot spot of nutrient overuse, but other areas, like the United States, Western Europe, and India, also have room to improve.

With strategic redistribution of nutrient inputs, we could bring underperforming lands worldwide to 75 percent of their production potential while only increasing global nitrogen use 9 percent and potassium use 34 percent—and reducing phosphorus use 2 percent.

The researchers caution that their analysis is at a coarse scale and that many other factors, including land characteristics, use of organic fertilizers, economics, geopolitics, water availability and climate change will influence actual gains in crop production and reductions in adverse environmental impacts. Nevertheless, they are encouraged by the strong indication that closing the “yield gap” on underperforming lands—previously identified as one of five promising points for meeting future food needs, along with halting farmland expansion in the tropics, using agricultural inputs more strategically, shifting diets and reducing food waste—holds great promise for sustainably boosting food security.

“These results show that substantial gains are indeed possible from closing the yield gap—and combining these efforts with improved management of existing lands can potentially reduce agriculture’s environmental impact,” Mueller says. “They also offer concrete suggestions as to where and how we can focus future efforts. This work should serve as a source of great encouragement and motivation for those working to feed the 9-billion-plus people anticipated to live on this planet in 2050 while protecting Earth’s indispensible life support systems.”

This paper is available via Advance Online Publication (AOP) at www.nature.com/nature. Journalists should seek to credit Nature as the source of stories covered. Additional maps and graphics available upon request.

Contacts:
Todd Reubold, Institute on the Environment,
reub0002@umn.edu, (612) 624-6140
Matt Hodson, University News Service,
mjhodson@umn.edu, (612) 625-0552

Todd Reubold | EurekAlert!
Further information:
http://www.umn.edu

More articles from Agricultural and Forestry Science:

nachricht Fighting a destructive crop disease with mathematics
21.06.2017 | University of Cambridge

nachricht Unusual soybean coloration sheds a light on gene silencing
20.06.2017 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>