Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New study informs blueberry flavor selection

05.09.2013
Changes in volatile compounds, eating quality of berries correlated

The University of Florida's (UF) Blueberry Breeding Program has been developing successful blueberry cultivars for more than 60 years.

The cultivars released from UF are credited with creating a Florida blueberry industry that was valued at $48 million in 2010, and allowing rapid expansion of blueberry production in other subtropical areas of the world. In the past, blueberry flavor selection in the program was based on two standards:

subjective ratings from breeders, and a berry's sugar-to-acid ratio. Recently, scientists have determined that the "eating quality" of blueberries has a much higher correlation to consumer acceptance and indication of "blueberry-like flavor intensity" than the traditional measures of sweetness, acidity, or sugar/acid ratios.

Identifying blueberry volatile components that correspond to the fruity, intense, sweet, and characteristic blueberry flavors could help blueberry breeders select for cultivars that produce a more desirable flavor. A new research study from University of Florida Institute for Plant Innovation scientists Jessica Gilbert, Michael Schwieterman, Thomas Colquhoun, David Clark, and James W. Olmstead (HortScience, July 2013) sought to measure the characteristics associated with the "blueberry eating experience" by prioritizing the traits that could help improve flavor.

The study compared volatile profiles of five southern highbush blueberry cultivars (Farthing, FL01-173, Scintilla, Star, and Sweetcrisp) using gas chromatography–mass spectrometry. "These five cultivars are significant in Florida and have been subjectively rated as having varied flavor characteristics," noted lead author James Olmstead. The research team harvested all five cultivars on four separate dates during the harvest season, and fruit from each cultivar were also harvested at four developmental stages on the first harvest date. As expected, total volatiles showed dramatic increases as ripening progressed. 'Star' had the smallest statistical variation in volatile content over the 4-week harvest period, whereas 'Scintilla' had the largest variation in volatile content. "We sought to profile the changes in volatiles through blueberry development. The general profile was an increase in total volatiles in blueberry samples as fruit progressed in maturity from green to blue," Olmstead explained.

The researchers noted that, when blueberries are commercially harvested when they are immature, they may contain low levels of many of volatile compounds, and therefore will not have the characteristic blueberry flavor. "If the volatiles in this study are in fact the most important to the perception of blueberry flavor, then 'Star' may have the most consistent flavor in response to varying environmental factors," they concluded.

The complete study and abstract are available on the ASHS HortScience electronic journal web site: http://hortsci.ashspublications.org/content/48/7/835.abstract

Founded in 1903, the American Society for Horticultural Science (ASHS) is the largest organization dedicated to advancing all facets of horticultural research, education, and application.

Mike W. Neff | EurekAlert!
Further information:
http://www.ashs.org

More articles from Agricultural and Forestry Science:

nachricht Climate change, population growth may lead to open ocean aquaculture
05.10.2017 | Oregon State University

nachricht New machine evaluates soybean at harvest for quality
04.10.2017 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>