Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study Helps Researchers Better Estimate Citrus Crop Yields

29.01.2014
Citrus crop-yield estimates may be more accurate, thus ensuring higher productivity and more revenue, if an algorithm proves as successful as it did in a recent University of Florida study.

Wonsuk “Daniel” Lee’s study, published in the January issue of the journal Biosystems Engineering, could eventually help Florida’s $9 billion-a-year citrus industry.

Lee, a UF agricultural and biological engineering professor, used an algorithm to find immature citrus in photos taken under different light conditions and fruit that was hidden by leaves and branches. He and his colleagues found 80 percent of the immature fruit.

The accuracy rate means growers can use the model to know well before harvest how much fruit is on their trees, Lee said. Therefore, they can more easily plan harvesting, predict crop yields and possibly make more money, he said.

Harvesting accounts for about 30 percent of the cost of citrus production, Lee said. With Lee’s system, growers can determine the optimal time to harvest much earlier, he said.

Traditionally, growers have estimated crop yields on the number of boxes they believe their mature citrus trees can produce, based on years of experience examining their groves, Lee said. The U.S. Department of Agriculture also publishes a monthly crop yield estimate, based on examining tree sizes at select locations around the state and then gauging the number of fruit each branch is expected to yield.

“This gives growers a more accurate rate than just guessing,” Lee said, although he noted that his method isn’t yet ready to be used to estimate yield for an entire grove. But when that day comes, he said, growers will benefit: “If you know the exact yield, you can predict the price.”

Traditionally, growers manage groves in units of varying acres. Growers harvest more citrus in some parts of their groves than others possibly because of differences in soil from one acre to another, water or disease, Lee said.

The study, co-authored by UF computer and information sciences doctoral student Subhajit Sengupta, details the yield-estimation method, which may also someday help growers identify the least productive parts of their groves so they can find out why.

“You have to find the cause of those and correct those so you can increase yield and profit, eventually,” he said.

Using a digital camera, two of Lee’s former students took 240 photos of fruit from a research grove at UF’s Institute of Food and Agricultural Sciences on the Gainesville campus. Because of the scope of the study, these are preliminary findings, Lee said, but they hold promise for growers seeking to boost the accuracy of their crop-yield estimates.

The findings are part of Lee’s research goal of developing an electronic system that can “see” and count fruit, a concept called machine vision.

The system includes a digital camera, a portable computer, GPS receiver and software designed by Lee and his graduate students. Ultimately, growers would like a machine that drives itself through groves, but researchers aren’t there yet, Lee said.

In smaller groves, it’s possible to photograph every tree, Lee said. But for those that span thousands of acres, operators would photograph trees in representative parts of the grove and use the results to make projections.

For now, Lee said, he and one of his graduate students are working on developing the self-running machine vision system that growers want.

Source: Wonsuk “Daniel” Lee, 352-392-1864, ext. 227, wslee@ufl.edu
Contact Information
By Brad Buck, 352-294-3303, bradbuck@ufl.edu

Brad Buck | Newswise
Further information:
http://www.ufl.edu

Further reports about: Citrus Researchers algorithm crop crop yield digital camera machine vision

More articles from Agricultural and Forestry Science:

nachricht New gene for atrazine resistance identified in waterhemp
24.02.2017 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

nachricht Researchers discover a new link to fight billion-dollar threat to soybean production
14.02.2017 | University of Missouri-Columbia

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>