Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Soy Provides High-Performance Perch Feed

16.08.2011
South Dakota State University aquaculture research shows soy can provide high-performance perch feed.

“In human food production realm, fish production provides another option to utilize South Dakota’s agricultural resources for economic development,” said professor Michael Brown, a scientist in SDSU’s Department of Natural Resource Management.

Brown’s latest work finds that some diets using soy protein concentrates, or SPC, perform as well as fishmeal-based diets.

That’s also good news for a hungry world and the world’s ocean fisheries, because production of aquafeeds needed to supply fish farming operations has nearly tripled in recent years, from 14.4 million U.S. short tons in 2000 to 41 million tons in 2010.

“The marine resources necessary to economically support that growth in aquaculture feeds and commercial production of fin fishes, etc., is not sustainable. Given the limited available supply and cost of fish meal and oils, plant-derived replacements are going to be highly valued in the marketplace,” Brown said.

That will give soybean and corn producers opportunities to add value to their crops, said Brown, who uses soybean meal, soy protein concentrates, and corn-based, dry distillers grains with solubles (DDGS) as primary ingredients in his experimental fish diets.

“The latest trials we’ve completed have compared SPC as fishmeal replacers in feeds for rainbow trout and yellow perch. We’ve done these trials with and without amino acid supplements to determine the effects on growth performance, fillet composition and other basic metrics that we use to determine how well a feed is performing,” Brown said. “Recently some of the SPC and DDGS diets that we’ve tested have yielded even better growth than what we saw with fish meal and DDGS controls.”

In a yellow perch feeding trial, one of the SPC diets tested without amino acid additions produced lower weight gain (20 percent) than the control diet (60 percent). However, with amino acids, SDSU researchers achieved the same level of growth performance (60 percent weight gain), Brown said. A different SPC product clearly outperformed fishmeal.

“Combined with selected supplements, that product provided a 175 percent weight gain, and without the amino acid supplements, it did just a touch better (80 percent weight gain) than our fishmeal control,” he said. These results reveal some of the variability that exists in SPC products.

There are several SPC products on the market and soybean processing technology will advance to provide others having different composition and nutritive value. Similarly, with changes occurring in the biofuel industry, alterations in the chemical profiles of corn co-products will occur. Brown’s ongoing work explores how well they perform in fish diets.

“In essence, the idea is, how far can we push soybean and corn products and co-products as diet constituents and still maintain or obtain better performance than we do with the marine-derived fishmeal diets.”

Brown said finding alternative, sustainable feeds to commercially raise fish will be critically important in future decades as the population of humans is expected to near the 9 billion mark. Fish are more efficient at converting feed than any land-based livestock, including poultry and swine, their closest competitors in feed conversion efficiency, Brown said.

“When you think about it, it makes sense. You have fish in this aqueous solution, in water. They require less skeletal support — it’s basic physics,” Brown said. “They require less energy to maintain their position in that medium. Even though there’s higher resistance there due to the viscosity, they also tend to move slower and use less energy. They’re also poikilotherms, so they don’t generate their own body heat — that’s less metabolic energy required to cool or heat themselves. These are some of the primary underlying reasons for the conversion efficiency. They simply make more efficient use of their food.”

The South Dakota Soybean Research & Promotion Council has played a key role in supporting Brown’s research. In addition, the U.S. Department of Agriculture has been funding the DDGS research. The South Dakota Agricultural Experiment Station also supports Brown’s aquaculture studies.

Lance Nixon | Newswise Science News
Further information:
http://www.sdstate.edu

Further reports about: Brown High-Performance SPC amino acid less energy soy protein weight gain yellow perch

More articles from Agricultural and Forestry Science:

nachricht New gene for atrazine resistance identified in waterhemp
24.02.2017 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

nachricht Researchers discover a new link to fight billion-dollar threat to soybean production
14.02.2017 | University of Missouri-Columbia

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>