Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Solid-state illuminator reduces nitrates in leafy green vegetables

16.04.2010
Treatment results in decreased nitrates, increased antioxidants

Searching for ways to improve the nutritional quality of leafy green vegetables, Lithuanian researchers have found success with new technology that features high-density photosynthetic photon flux generated by a solid-state illuminator. The technology, which can be applied in greenhouses for preharvest treatment of leafy vegetables, was found to decrease concentrations of harmful nitrates while allowing some beneficial nutrient levels to increase. The research results were published in a recent issue of HortScience.

The researchers experimented with a solid-state illuminator to provide short-term preharvest light treatment of lettuce, marjoram, and green onions. The vegetable plants were grown to harvest time in a greenhouse under daylight with supplementary lighting provided by standard high-pressure sodium lamps. A subsequent 3-day treatment within a phytotron under light-emitting diodes resulted in the reduction of nitrate concentration by 44% to 65%.

According to Giedre Samuoliene, lead author of the report, the technology is different from the usual practice of using high-pressure sodium lamps; solid-state illuminators limit the amount of radiant heat, allowing a high intensity of photosynthesis. Additionally, the technique allows for short-term treatment of plants rather than for full-cycle growth.

In vegetable leaves exposed to light generated by the solid-state illuminator, nitrate concentration was reduced by two to three times in comparison with those kept under high-pressure sodium lamps. The highest nitrate reduction rate was observed in hydroponically grown lettuce; after a 3-day treatment under red LEDs, tests showed a 65% relative decrease of nitrate concentration. The relative decrease of nitrates was similar in all species tested. "The results of our study indicate that nitrate content in lettuce, marjoram, and green onions can be considerably reduced by several times using short-term preharvest treatment under purely red light with high PPFD", stated Samuoliene.

A significant outcome of the research is the finding that leafy vegetables can be produced under normal lighting conditions, while the health quality can be improved with a relatively short treatment using an advanced solid-state illuminator. The new technology may be expensive, but can prove economically viable in terms of production costs and the benefits of vegetables with added nutritional value. Since the treatment is conducted only over 10% of the overall growth cycle, the capital cost limitations for the application of solid-state lighting in horticulture are mitigated.

The researchers noted that the technology may be particularly practical for leafy vegetable production in northern countries where greenhouse plants are often grown under poor lighting conditions.

The complete study and abstract are available on the ASHS HortScience electronic journal web site: http://hortsci.ashspublications.org/cgi/content/abstract/44/7/1857

Founded in 1903, the American Society for Horticultural Science (ASHS) is the largest organization dedicated to advancing all facets of horticultural research, education, and application. More information at ashs.org

Michael W. Neff | EurekAlert!
Further information:
http://www.ashs.org

More articles from Agricultural and Forestry Science:

nachricht Cascading use is also beneficial for wood
11.12.2017 | Technische Universität München

nachricht The future of crop engineering
08.12.2017 | Max-Planck-Institut für Biochemie

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>