Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Shade-coffee farms support native bees that help maintain genetic diversity in remnant tropical forests

Shade-grown coffee farms support native bees that help maintain the health of some of the world's most biodiverse tropical regions, according to a study by a University of Michigan biologist and a colleague at the University of California, Berkeley.

The study suggests that by pollinating native trees on shade-coffee farms and adjacent patches of forest, the bees help preserve the genetic diversity of remnant native-tree populations. The study was published online Monday in the Proceedings of the National Academy of Sciences.

"A concern in tropical agriculture areas is that increasingly fragmented landscapes isolate native plant populations, eventually leading to lower genetic diversity," said Christopher Dick, a U-M assistant professor of ecology and evolutionary biology. "But this study shows that specialized native bees help enhance the fecundity and the genetic diversity of remnant native trees, which could serve as reservoirs for future forest regeneration."

An estimated 32.1 million acres of tropical forest are destroyed each year by the expansion of cropland, pasture and logging. Often grown adjacent to remnant forest patches, coffee crops cover more than 27 million acres of land in many of the world's most biodiverse regions.

Over the last three decades, many Latin American coffee farmers have abandoned traditional shade-growing techniques, in which plants are grown beneath a diverse canopy of trees. In an effort to increase production, much of the acreage has been converted to "sun coffee," which involves thinning or removing the canopy.

Previous studies have demonstrated that shade-grown farms boost biodiversity by providing a haven for migratory birds, nonmigratory bats and other beneficial creatures. Shade-coffee farms also require far less synthetic fertilizer, pesticides and herbicides than sun-coffee plantations.

In the latest study, U-M's Dick and UC-Berkeley's Shalene Jha investigated the role of native bees that pollinate native trees in and around shade-grown coffee farms in the highlands of southern Chiapas, Mexico. In their study area, tropical forest now represents less than 10 percent of the land cover.

Jha and Dick wanted to determine the degree to which native bees, which forage for pollen and nectar and pollinate trees in the process, facilitate gene flow between the remnant forest and adjacent shade-coffee farms.

They focused on Miconia affinis, a small, native understory tree that many farmers allow to invade shade-coffee farms because the trees help control soil erosion.

M. affinis, commonly known as the saquiyac tree, is pollinated by an unusual method known as buzz pollination. In order to release pollen from the tree's flowers, bees grab hold and vibrate their flight muscles, shaking the pollen free. Non-native Africanized honeybees don't perform buzz pollination, but many native bees do.

"Our focus on a buzz-pollinated tree allowed us to exclude Africanized honeybees and highlight the role of native bees as both pollinators and vectors of gene flow in the shade-coffee landscape mosaic," said Jha, a postdoctoral fellow at UC-Berkeley who conducted the research while earning her doctorate at U-M.

Jha and Dick combined field observations with seed-parentage genetic analysis of Miconia affinis. They found that trees growing on shade-coffee farms received bee-delivered pollen from twice as many donor trees as M. affinis trees growing in the adjacent remnant forest. The higher number of pollen donors translates into greater genetic diversity among the offspring of the shade-farm trees.

Seed parentage analysis revealed that pollen from forest trees sired 65.1 percent of the seeds sampled from M. affinis trees growing in a shade-coffee habitat. That finding demonstrates that native bees are promoting gene flow between the remnant forest and the coffee farms—bridging the two habitat types—and that the shade-farm trees serve as a repository of local M. affinis genetic diversity, according to the authors.

In addition, Jha and Dick found that native bees carried pollen twice as far in a shade-coffee habitat than they did in the forest. They documented shade-farm pollination trips of nearly a mile, which are among the longest precisely recorded pollination trips by native tropical bees.

Jha and Dick said their results likely apply to other buzz-pollinated plants, which represent about 8 percent of the world's flowering plant species, as well as to other native plants whose limited pollen and nectar rewards don't attract honeybees.

The enhanced genetic diversity of the shade-farm trees could provide a reservoir for future forest regeneration, as the coffee farms typically fall out of production in less than a century. Given that potential, along with the shade farm's previously identified roles in connecting habitat patches and sheltering native wildlife, it is important to encourage this traditional style of agriculture, Jha and Dick said.

The project was supported by the Helen Olson Brower Fellowship at the University of Michigan and by the National Science Foundation.

Jim Erickson | EurekAlert!
Further information:

More articles from Agricultural and Forestry Science:

nachricht Forest Management Yields Higher Productivity through Biodiversity
14.10.2016 | Technische Universität München

nachricht Farming with forests
23.09.2016 | University of Illinois College of Agricultural, Consumer and Environmental Sciences (ACES)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>