Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

US scientists discover genetic key to dramatically raise yields and improve taste of hybrid tomato plants

06.04.2010
Spectacularly increased yields and improved taste have been achieved with hybrid tomato plants by researchers at the Robert H. Smith Faculty of Agriculture, Food and Environment at the Hebrew University and the Cold Spring Harbor Laboratory (CSHL), New York.

The researchers have discovered the yield-boosting power of a single gene, which controls when plants make flowers and that works in different varieties of tomato and, crucially, across a range of environmental conditions. The discovery was patented by Yissum, the technology transfer arm of the Hebrew University, which is seeking potential partners for further development and commercialization.

“This discovery has tremendous potential to transform both the billion-dollar tomato industry, as well as agricultural practices designed to get the most yield from other flowering crops,” says CSHL’s Dr. Zach Lippman, one of the three authors of the study, which appears in the magazine Nature Genetics online . The study is co-authored by Dr. Uri Krieger and Prof. Dani Zamir of the Hebrew University.

The team made the discovery while hunting for genes that boost hybrid vigor, a revolutionary breeding principle that spurred the production of outstanding hybrid crops like corn and rice a century ago. Hybrid vigor, also known as heterosis, is the phenomenon by which intercrossing two varieties of plants produces more vigorous hybrid offspring with higher yields.

First observed by Charles Darwin in 1876, heterosis was rediscovered by CSHL corn geneticist George Shull 30 years later, but how heterosis works has remained a mystery.

Plants carry two copies of each gene, and Shull’s studies suggested that harmful, vigor-killing mutations that accumulate naturally in every generation are exposed by inbreeding, but hidden by crossbreeding. But there is still no consensus as to what causes heterosis. A theory for heterosis, supported by this new Hebrew University-Cold Spring discovery, postulates that improved vigor stems from only a single gene – an effect called “superdominance” or “overdominance.”

To find such overdominant genes, the US-Israeli team developed a novel approach by turning to a vast tomato “mutant library” – a collection of 5000 plants, each of which has a single mutation in a single gene that causes defects in various aspects of tomato growth, such as fruit size, leaf shape, etc. Selecting 33 mutant plants, most of which produced low yield, the team crossed each mutant with its normal counterpart and searched for hybrids with improved yield. Among several cases, the most dramatic example increased yield by a whopping 60%.

This hybrid, the team found, produced greater yields because there was one normal copy and one mutated copy of only a single gene that produces a protein called florigen. This protein, touted as the breakthrough discovery of the year in 2004 in Science magazine, instructs plants when to stop making leaves and start making flowers, which in turn produce fruit.

In plants such as tomatoes, flowering (and therefore yield) is controlled by a delicate balance between the florigen protein, which promotes flowering, and another related protein that delays flowering. A mutation in only one copy of the florigen gene causes the hybrid to produce more flowers in less time – the key to improved yield. What the researchers found is that to maximize yield, there can’t be too much or too little florigen. A mutation in one copy of the gene results in the exact dose of florigen required to cause heterosis.

The scientists have observed the gene’s heterosis effect in different varieties of tomatoes and in plants grown in different climate and soil conditions, both in Israel and in New York at CSHL and the Cornell Horticultural Experiment Station at Riverhead, N.Y.

In addition to superior yield, the hybrids also display another, perhaps equally important quality – taste. Tomato plants only produce a finite amount of sugar, which they distribute equally among their fruits. So higher yields usually result in each fruit having a lower sugar content. But, remarkably, the florigen gene also boosted sugar content and sweetness of the individual fruits.

This study marks the first example of a single gene that consistently causes heterosis. The scientists are now looking to team up with agricultural companies to develop the hybrids for commercial use. The concept that mutations in one copy of a single gene can improve yield has broad implications for breeders. Mutant plants are usually thrown away because of the notion that mutations would have negative effects on growth, but this study suggests that hybrid mutations might lead the next revolution of improved crops.

Jerry Barach | Hebrew University of Jerusalem
Further information:
http://www.huji.ac.il

More articles from Agricultural and Forestry Science:

nachricht Alkaline soil, sensible sensor
03.08.2017 | American Society of Agronomy

nachricht New 3-D model predicts best planting practices for farmers
26.06.2017 | Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>