Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists discover new details about rice blast, a deadly plant fungus

19.06.2013
Study also advances understanding of wheat blast

Like a stealthy enemy, blast disease invades rice crops around the world, killing plants and cutting production of one of the most important global food sources.

Now, a study by an international team of researchers has shed light on how the rice blast fungus, Magnaporthe oryzae, invades plant tissue. The finding is a step toward learning how to control the disease, which by some estimates destroys enough rice to feed 60 million people annually.

The team, led by Barbara Valent, Kansas State University distinguished professor in plant pathology, found that the fungus has evolved two distinct secretion systems that facilitate its invasion into rice plants. Study results have been published by Nature's new online journal, Nature Communications: http://www.nature.com/ncomms/2013/130618/ncomms2996/abs/ncomms2996.html.

"Knowing that a special secretion system is required for disease is significant, because it means we can block this system without harming other fungi that are critical for healthy ecosystems," Valent said.

In addition to researchers from Kansas State University, the team includes professor Nicholas Talbot, from the University of Exeter in the United Kingdom, and students in his laboratory, as well as scientists from the Iwate Biotechnology Research Center in Japan.

Rice blast has been known throughout recorded history and occurs in all countries where rice is grown, including the U.S. In 1985, wheat blast emerged as a new disease sharply reducing wheat yields in Brazil. So far, wheat blast has only spread within South America and has not been detected in the U.S. Valent is now leading a team of scientists focused on developing resources for rapid identification and elimination of the disease if it should arrive in U.S. wheat regions.

"Rice blast disease is a threat to global food security and it's closely related to wheat blast," Valent said. "Because those two crops are the most important food staples worldwide, learning about these diseases is incredibly important."

Researchers know that to cause plant diseases, pathogenic microorganisms secrete proteins, called effector proteins, into the host plant's tissue, Valent said. The proteins suppress the plant's immunity and support the pathogen's growth. The goal of the study was to learn if fungi need different secretory systems to aid their invasion into host plants.

"We knew that over time bacterial pathogens evolved multiple secretion systems to target effector proteins where they need to go. We didn't know whether fungi, which cause the major diseases in most crop plants, also require different secretory mechanisms," she said.

They learned that the rice blast fungus Magnaporthe oryzae has evolved a novel secretion system for effectors that go inside the plant cell. In contrast, effectors that end up in the space outside the plant cells are secreted by a classical system, which is shared by organisms from fungi to humans.

"In this study, we focused on investigating how the fungus secretes effectors during invasion of rice tissue by producing strains secreting effectors linked to fluorescent proteins from jellyfish and corals. We performed microscopy to watch the fungus secreting these fluorescent proteins as it grows inside rice cells, and we noticed that normal treatments that block protein secretion didn't stop those effectors that end up inside rice cells," Valent said.

"Identifying how these processes function will help us understand how disease microorganisms evolve and prove pivotal in controlling blast diseases," she said.

Barbara Valent | EurekAlert!
Further information:
http://www.k-state.edu

More articles from Agricultural and Forestry Science:

nachricht Energy crop production on conservation lands may not boost greenhouse gases
13.03.2017 | Penn State

nachricht How nature creates forest diversity
07.03.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>