Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists discover new details about rice blast, a deadly plant fungus

19.06.2013
Study also advances understanding of wheat blast

Like a stealthy enemy, blast disease invades rice crops around the world, killing plants and cutting production of one of the most important global food sources.

Now, a study by an international team of researchers has shed light on how the rice blast fungus, Magnaporthe oryzae, invades plant tissue. The finding is a step toward learning how to control the disease, which by some estimates destroys enough rice to feed 60 million people annually.

The team, led by Barbara Valent, Kansas State University distinguished professor in plant pathology, found that the fungus has evolved two distinct secretion systems that facilitate its invasion into rice plants. Study results have been published by Nature's new online journal, Nature Communications: http://www.nature.com/ncomms/2013/130618/ncomms2996/abs/ncomms2996.html.

"Knowing that a special secretion system is required for disease is significant, because it means we can block this system without harming other fungi that are critical for healthy ecosystems," Valent said.

In addition to researchers from Kansas State University, the team includes professor Nicholas Talbot, from the University of Exeter in the United Kingdom, and students in his laboratory, as well as scientists from the Iwate Biotechnology Research Center in Japan.

Rice blast has been known throughout recorded history and occurs in all countries where rice is grown, including the U.S. In 1985, wheat blast emerged as a new disease sharply reducing wheat yields in Brazil. So far, wheat blast has only spread within South America and has not been detected in the U.S. Valent is now leading a team of scientists focused on developing resources for rapid identification and elimination of the disease if it should arrive in U.S. wheat regions.

"Rice blast disease is a threat to global food security and it's closely related to wheat blast," Valent said. "Because those two crops are the most important food staples worldwide, learning about these diseases is incredibly important."

Researchers know that to cause plant diseases, pathogenic microorganisms secrete proteins, called effector proteins, into the host plant's tissue, Valent said. The proteins suppress the plant's immunity and support the pathogen's growth. The goal of the study was to learn if fungi need different secretory systems to aid their invasion into host plants.

"We knew that over time bacterial pathogens evolved multiple secretion systems to target effector proteins where they need to go. We didn't know whether fungi, which cause the major diseases in most crop plants, also require different secretory mechanisms," she said.

They learned that the rice blast fungus Magnaporthe oryzae has evolved a novel secretion system for effectors that go inside the plant cell. In contrast, effectors that end up in the space outside the plant cells are secreted by a classical system, which is shared by organisms from fungi to humans.

"In this study, we focused on investigating how the fungus secretes effectors during invasion of rice tissue by producing strains secreting effectors linked to fluorescent proteins from jellyfish and corals. We performed microscopy to watch the fungus secreting these fluorescent proteins as it grows inside rice cells, and we noticed that normal treatments that block protein secretion didn't stop those effectors that end up inside rice cells," Valent said.

"Identifying how these processes function will help us understand how disease microorganisms evolve and prove pivotal in controlling blast diseases," she said.

Barbara Valent | EurekAlert!
Further information:
http://www.k-state.edu

More articles from Agricultural and Forestry Science:

nachricht Plasma-zapping process could yield trans fat-free soybean oil product
02.12.2016 | Purdue University

nachricht New findings about the deformed wing virus, a major factor in honey bee colony mortality
11.11.2016 | Veterinärmedizinische Universität Wien

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>