Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers unlock ancient Maya secrets with modern soil science

12.11.2012
After emerging sometime before 1000 BC, the Maya rose to become the most advanced Pre-Columbian society in the Americas, thriving in jungle cities of tens of thousands of people, such as the one in Guatemala's Tikal National Park. But after reaching its peak between 250 and 900 AD, the Maya civilization began to wane and exactly why has been an enduring mystery to scientists.

Writing in the Nov.-Dec. issue of the Soil Science of America Journal (SSSA-J), an interdisciplinary team led by Richard Terry, a Brigham Young University soil scientist, now describes its analysis of maize agriculture in the soils of Tikal. Not surprisingly, the study uncovered evidence for major maize production in lowland areas, where erosion is less likely and agriculture was presumably more sustainable for this community of an estimated 60,000 people.

But the team also discovered evidence of erosion in upslope soils, suggesting that farming did spread to steeper, less suitable soils over time. And if Maya agriculture did cause substantial erosion, the soil loss could eventually have undercut the Maya's ability to grow food, say the researchers.

The findings are just the latest example of how invisible artifacts in soil—something archeologists literally used to brush aside—can inform studies of past civilizations. That's because artwork and buildings can crumble over time and jungles will eventually conceal ancient farm fields, but "the soil chemistry is still there," Terry says.

He explains, for example, that most forest vegetation native to Tikal uses a photosynthetic pathway called C3, while maize uses a pathway called C4. The soil organic matter derived from these two pathways also differs, allowing researchers to make conclusions about the types of plants that were growing in the soils they test.

Thus, by analyzing soils in different areas of Tikal as well as looking at the layers that had formed in the soils, Terry and his collaborators were able to map the areas where ancient maize production occurred, including lowland "bajo" areas and possibly steeper slopes, as more food was needed.

Questions like this about past farming practices have always interested archeologists, Terry notes. But the tools of modern soil science are now enabling these scientists to ask increasingly sophisticated questions about how ancient peoples tried to sustain themselves—and whether their treatment of the land was a factor in cases where they failed.

"[These tools] open us up to thinking about the world in ways that we haven't before," Terry says. "We have changed the paradigm amongst the archaeologists."

The research appearing in SSSA-J was funded by grants from the National Science Foundation and Brigham Young University.

Read more in the latest issue of Soil Horizons, a publication of the Soil Science Society of America.

The full article is available for no charge for 30 days following the date of this summary. View the abstract at https://www.soils.org/publications/sssaj/abstracts/0/0/sssaj2010.0224.

Madeline Fisher | EurekAlert!
Further information:
http://www.sciencesocieties.org

More articles from Agricultural and Forestry Science:

nachricht Energy crop production on conservation lands may not boost greenhouse gases
13.03.2017 | Penn State

nachricht How nature creates forest diversity
07.03.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>