Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Turning Freshwater Farm Ponds into Crab Farms

13.10.2008
Work by researchers at North Carolina State University is leading to a new kind of crab harvest – blue crabs grown and harvested from freshwater ponds, instead of from the sea.

Crab lovers shouldn't worry, researchers say, because the pond-raised crabs look and taste just like their ocean-raised brethren.

North Carolina's native blue crab population has been at historic lows since 2000. Dr. Dave Eggleston, director of NC State's Center for Marine Sciences and Technology (CMAST) and professor of marine, earth and atmospheric sciences, looked at various methods for helping the population recover. He hit upon a solution which not only reduces pressure on existing crab populations, but also benefits farmers looking to diversify their crops: using irrigation ponds on farms to grow blue crabs.

"We started out by catching small crabs in the wild and stocking them into farm ponds loaded with bass and bluegill predators, and were still able to get 12 percent survival," Eggleston says.

"So we teamed with the University of Maryland's Center of Marine Biotechnology who had the expertise to growth hatchery-reared blue crabs, and stocked these blue crabs in freshwater experimental aquaculture ponds at NC State's Vernon James Research and Extension Center in Plymouth, N.C., where the crabs exhibited some of the highest growth rates on record."

Eggleston then noticed that a lot of farmers in Eastern N.C. were trying to diversify their crop offerings in response to the decline in tobacco demand.

"A lot of these farms have irrigation ponds, and we thought if crabs can live in fresh water, this would take some pressure off the coastal crab population and give farmers another crop, by letting their ponds work for them," he says.

Eggleston and his fellow researchers discovered that crabs can tolerate a salinity level of only .3 parts per thousand, which is about the same level found in coastal tap water. They did further work to determine the best set of circumstances for raising crab: population density, food rations, and habitat structure in ponds.

This past July, Eggleston and Ray Harris, NC State director of cooperative extension for Carteret County, had the opportunity for a large-scale test when they stocked a 10-acre lake with 40,000 hatchery-raised crabs, and a smaller pond with 4,000 crabs. The crabs will take approximately 105 days to reach maturity, and so far the endeavor looks successful.

With the rapid rate of growth for pond-raised crabs, Eggleston expects that in a given year, a farm could produce two to three harvests, as crabs don't do well in freshwater during the winter months.

"If you look at a 2 1/2 -acre pond, you could stock it with 50,000 hatchery-raised crabs and expect to harvest around 20 percent, or 10,000 fully grown crabs. At $3 per crab, that's $30,000 – and multiply that times three. It definitely adds up."

Funding for this research was provided by the N.C. Blue Crab Research Program that was established by the N.C. General Assembly and is administered by North Carolina Sea Grant.

Tracey Peake | Newswise Science News
Further information:
http://www.ncsu.edu

Further reports about: Crab Farms Farm Freshwater Farm Marine blue crabs crab crab populations freshwater

More articles from Agricultural and Forestry Science:

nachricht New gene for atrazine resistance identified in waterhemp
24.02.2017 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

nachricht Researchers discover a new link to fight billion-dollar threat to soybean production
14.02.2017 | University of Missouri-Columbia

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>