Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Researchers Turning Freshwater Farm Ponds into Crab Farms

Work by researchers at North Carolina State University is leading to a new kind of crab harvest – blue crabs grown and harvested from freshwater ponds, instead of from the sea.

Crab lovers shouldn't worry, researchers say, because the pond-raised crabs look and taste just like their ocean-raised brethren.

North Carolina's native blue crab population has been at historic lows since 2000. Dr. Dave Eggleston, director of NC State's Center for Marine Sciences and Technology (CMAST) and professor of marine, earth and atmospheric sciences, looked at various methods for helping the population recover. He hit upon a solution which not only reduces pressure on existing crab populations, but also benefits farmers looking to diversify their crops: using irrigation ponds on farms to grow blue crabs.

"We started out by catching small crabs in the wild and stocking them into farm ponds loaded with bass and bluegill predators, and were still able to get 12 percent survival," Eggleston says.

"So we teamed with the University of Maryland's Center of Marine Biotechnology who had the expertise to growth hatchery-reared blue crabs, and stocked these blue crabs in freshwater experimental aquaculture ponds at NC State's Vernon James Research and Extension Center in Plymouth, N.C., where the crabs exhibited some of the highest growth rates on record."

Eggleston then noticed that a lot of farmers in Eastern N.C. were trying to diversify their crop offerings in response to the decline in tobacco demand.

"A lot of these farms have irrigation ponds, and we thought if crabs can live in fresh water, this would take some pressure off the coastal crab population and give farmers another crop, by letting their ponds work for them," he says.

Eggleston and his fellow researchers discovered that crabs can tolerate a salinity level of only .3 parts per thousand, which is about the same level found in coastal tap water. They did further work to determine the best set of circumstances for raising crab: population density, food rations, and habitat structure in ponds.

This past July, Eggleston and Ray Harris, NC State director of cooperative extension for Carteret County, had the opportunity for a large-scale test when they stocked a 10-acre lake with 40,000 hatchery-raised crabs, and a smaller pond with 4,000 crabs. The crabs will take approximately 105 days to reach maturity, and so far the endeavor looks successful.

With the rapid rate of growth for pond-raised crabs, Eggleston expects that in a given year, a farm could produce two to three harvests, as crabs don't do well in freshwater during the winter months.

"If you look at a 2 1/2 -acre pond, you could stock it with 50,000 hatchery-raised crabs and expect to harvest around 20 percent, or 10,000 fully grown crabs. At $3 per crab, that's $30,000 – and multiply that times three. It definitely adds up."

Funding for this research was provided by the N.C. Blue Crab Research Program that was established by the N.C. General Assembly and is administered by North Carolina Sea Grant.

Tracey Peake | Newswise Science News
Further information:

Further reports about: Crab Farms Farm Freshwater Farm Marine blue crabs crab crab populations freshwater

More articles from Agricultural and Forestry Science:

nachricht Forest Management Yields Higher Productivity through Biodiversity
14.10.2016 | Technische Universität München

nachricht Farming with forests
23.09.2016 | University of Illinois College of Agricultural, Consumer and Environmental Sciences (ACES)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>