Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers find nature's shut-off switch for cellulose production

19.12.2008
Purdue University researchers found a mechanism that naturally shuts down cellulose production in plants, and learning how to keep that switch turned on may be key to enhancing biomass production for plant-based biofuels.

Nicholas Carpita, a professor of botany and plant pathology, said that small-interfering RNAs (siRNAs) play a normal role in plant development by shutting off genes involved in primary cell wall growth in order to begin development of thicker, secondary cell walls.

"These small RNAs were known to play a role in fending off disease-causing pathogens, but we are only now beginning to understand their involvement in normal plant development," he said.

Carpita's research team reported its findings in Monday's (Dec. 15) early online issue of the Proceedings of the National Academy of Sciences.

"If we can learn to interfere with the down-regulation of cellulose synthesis, then plants may be able to produce more cellulose, which is key to biofuels production," Carpita said.

Mick Held, a postdoctoral researcher in Carpita's lab, virologist Steve Scofield, a U.S. Department of Agriculture research scientist and adjunct assistant professor of agronomy at Purdue, and Carpita made the discovery in barley after introducing a virus as a way to "silence" specific genes and study their functions. The researchers noticed that the virus had more effect then anticipated.

"The virus hijacked a whole suite of genes, and when we compared the targeted plant to our control plants we found that the small RNAs were responsible and already in the controls even without adding the virus," Held said.

Carpita said this let researchers see that the siRNAs - among other things - regulate and shut down primary cell wall development to begin secondary wall growth.

"These secondary stages result in characteristics such as tough rinds of corn stalks, vascular elements to conduct water and fibers for strength," he said.

The researchers said that delaying or preventing the shutdown of both primary and secondary cellulose production might enhance total plant biomass.

"Most biofuel researchers believe that cellulose utilization offers the best path to sustainable ethanol production," Scofield said. "Our work uncovered a previously unknown mechanism that suggests a way to increase the amount of cellulose produced in plants."

Other members of the research team were Bryan Penning and Sarah Kessans of Purdue and Amanda Brandt of the USDA/Ag Research Service, Crop Production and Pest Control Research Unit located at Purdue.

The research was funded by a U.S. Department of Energy, Energy Biosciences grant.

Writer:
Beth Forbes, (765) 494-2722, forbes@purdue.edu
Source:
Nicholas Carpita, (765) 494-4653, carpita@purdue.edu
Mick Held, heldm@msu.edu
Steve Scofield, Office: (765) 494-3674; Lab: (765) 496-2232, scofield@purdue.edu
Ag Communications: (765) 494-2722;
Beth Forbes, forbes@purdue.edu
Agriculture News Page

Beth Forbes | EurekAlert!
Further information:
http://www.purdue.edu

More articles from Agricultural and Forestry Science:

nachricht Alkaline soil, sensible sensor
03.08.2017 | American Society of Agronomy

nachricht New 3-D model predicts best planting practices for farmers
26.06.2017 | Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>