Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Find Changes in Agriculture Increase High River Flow Rates

29.07.2014

Study looked at Raccoon River watershed in Iowa

Just as a leaky roof can make a house cooler and wetter when it’s raining as well as hotter and dryer when it’s sunny, changes in land use can affect river flow in both rainy and dry times, say two University of Iowa researchers.

While it may be obvious that changes in river water discharge across the U.S. Midwest can be related to changes in rainfall and agricultural land use, it is important to learn how these two factors interact in order to get a better understanding of what the future may look like, says Gabriele Villarini, UI assistant professor of civil and environmental engineering, assistant research engineer at IIHR—Hydroscience & Engineering and lead author of a published research paper on the subject.

“We wanted to know what the relative impacts of precipitation and agricultural practices played in shaping the discharge record that we see today,” he says. “Is it an either/or answer or a much more nuanced one?

“By understanding our past we are better positioned in making meaningful statements about our future,” he says.

The potential benefits of understanding river flow are especially great in the central United States, particularly Iowa, where spring and summer floods have hit the area in 1993, 2008, 2013 and 2014, interrupted by the drought of 2012. Large economic damage and even loss of life have resulted, says co-author Aaron Strong, UI assistant professor in the Department of Urban and Regional Planning and with the Environmental Policy Program at the UI Public Policy Center.

“What is interesting to note,” says Strong, “is that the impacts, in terms of flooding, have been exacerbated. At the same time, the impacts of drought, for in-stream flow, have been mitigated with the changes in land use composition that we have seen over the last century.”

In order to study the effect of changes in agricultural practices on Midwest river discharge, the researchers focused on Iowa’s Raccoon River at Van Meter, Iowa. The 9,000-square-kilometer watershed has the advantage of having had its water discharge levels measured and recorded daily for most of the 20th century right on up to the present day. (The study focused on the period 1927-2012). During that period, the number of acres used for corn and soybean production greatly increased, roughly doubling over the course of the 20th century.

Not surprisingly, they found that variability in rainfall is responsible for most of the changes in water discharge volumes.

However, the water discharge rates also varied with changes in agricultural practices, as defined by soybean and corn harvested acreage in the Raccoon River watershed. In times of flood and in times of drought, water flow rates were exacerbated by more or less agriculture, respectively. The authors suggest that although flood conditions may be exacerbated by increases in agricultural production, this concern “must all be balanced by the private concerns of increased revenue from agricultural production through increased cultivation.”

“Our results suggest that changes in agricultural practices over this watershed—with increasing acreage planted in corn and soybeans over time—translated into a seven-fold increase in rainfall contribution to the average annual maximum discharge when we compare the present to the 1930s,” Villarini says.

The UI research paper, “Roles of climate and agricultural practices in discharge changes in an agricultural watershed in Iowa,” can be found in the April 15 online edition of Agriculture, Ecosystems & Environment.

Gary Galluzzo | newswise
Further information:
http://www.uiowa.edu

More articles from Agricultural and Forestry Science:

nachricht Four newly-identified genes could improve rice
27.06.2016 | Kobe University

nachricht Better soil data key for future food security
21.06.2016 | International Institute for Applied Systems Analysis (IIASA)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Thousands on one chip: New Method to study Proteins

Since the completion of the human genome an important goal has been to elucidate the function of the now known proteins: a new molecular method enables the investigation of the function for thousands of proteins in parallel. Applying this new method, an international team of researchers with leading participation of the Technical University of Munich (TUM) was able to identify hundreds of previously unknown interactions among proteins.

The human genome and those of most common crops have been decoded for many years. Soon it will be possible to sequence your personal genome for less than 1000...

Im Focus: Optical lenses, hardly larger than a human hair

3D printing enables the smalles complex micro-objectives

3D printing revolutionized the manufacturing of complex shapes in the last few years. Using additive depositing of materials, where individual dots or lines...

Im Focus: Flexible OLED applications arrive

R2D2, a joint project to analyze and development high-TRL processes and technologies for manufacture of flexible organic light-emitting diodes (OLEDs) funded by the German Federal Ministry of Education and Research (BMBF) has been successfully completed.

In contrast to point light sources like LEDs made of inorganic semiconductor crystals, organic light-emitting diodes (OLEDs) are light-emitting surfaces. Their...

Im Focus: Unexpected flexibility found in odorant molecules

High resolution rotational spectroscopy reveals an unprecedented number of conformations of an odorant molecule – a new world record!

In a recent publication in the journal Physical Chemistry Chemical Physics, researchers from the Max Planck Institute for the Structure and Dynamics of Matter...

Im Focus: 3-D printing produces cartilage from strands of bioink

Strands of cow cartilage substitute for ink in a 3D bioprinting process that may one day create cartilage patches for worn out joints, according to a team of engineers. "Our goal is to create tissue that can be used to replace large amounts of worn out tissue or design patches," said Ibrahim T. Ozbolat, associate professor of engineering science and mechanics. "Those who have osteoarthritis in their joints suffer a lot. We need a new alternative treatment for this."

Cartilage is a good tissue to target for scale-up bioprinting because it is made up of only one cell type and has no blood vessels within the tissue. It is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Quantum technologies to revolutionise 21st century - Nobel Laureates discuss at Lindau

30.06.2016 | Event News

International Conference ‘GEO BON’ Wants to Close Knowledge Gaps in Global Biodiversity

28.06.2016 | Event News

ERES 2016: The largest conference in the European real estate industry

09.06.2016 | Event News

 
Latest News

Modeling NAFLD with human pluripotent stem cell derived immature hepatocyte like cells

30.06.2016 | Health and Medicine

Rice University lab runs crowd-sourced competition to create 'big data' diagnostic tools

30.06.2016 | Life Sciences

A drop of water as a model for the interplay of adhesion and stiction

30.06.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>