Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research on Wood Formation Sheds Light on Plant Biology

24.08.2012
Scientists at North Carolina State University have discovered a phenomenon never seen before in plants while studying molecular changes inside tree cells as wood is formed.

In research published online in Proceedings of the National Academy of Sciences the week of Aug. 20, the team found that one member of a family of proteins called transcription factors took control of a cascade of genes involved in forming wood, which includes a substance called lignin that binds fibers together and gives wood its strength.

The controller protein regulated gene expression on multiple levels, preventing abnormal or stunted plant growth. And it did so in a novel way.

The controller, a spliced variant of the SND1 family, was found in the cytoplasm outside the cell nucleus. This is abnormal, because transcription factor proteins are always in the nucleus. But when one of the four other proteins in its family group was present, the spliced variant was carried into the nucleus, where it bound to the family member, creating a new type of molecule that suppressed the expression of a cascade of genes.

“This is nothing that’s been observed before in plants,” says Dr. Vincent Chiang, co-director of NC State’s Forest Biotechnology Group with Dr. Ron Sederoff. Chiang’s research team was the first to produce a transgenic tree with reduced lignin. High lignin levels are desirable for lumber, but lignin is removed during the process of making paper or manufacturing biofuels.

Chiang, a professor in the College of Natural Resources, described the team’s finding as the long-sought path to understanding the hierarchy of gene regulation for wood formation.

Lead authors are Dr. Quanzi Li, senior research associate, who discovered the controller protein, and doctoral student Ying-Chung Lin, who carried out extensive experimental work, demonstrating with Li that the controller protein was carried into the nucleus.

The research was funded with a grant from the U.S. Department of Energy’s Office of Biological and Environmental Research.

Note to editors: An abstract of the study follows.

-ford-

“Splice variant of the SND1 transcription factor is a dominant negative of SND1 members and their regulation in Populus trichocarpa”

Published: Online the week of Aug. 20 in Proceedings of the National Academy of Sciences

Authors: Quanzi Li, Ying-Chung Lin, Ying-Hsuan Sun, Jian Song, Hao Chen, Xing-Hai Zhang, Ronald R. Sederoff, and Vincent L. Chiang. All are members of the Forest Biotechnology Group in the Department of Forestry and Environmental Resources at North Carolina State University, except for Xing-Hai Zhang, who is with the Department of Biological Sciences at Florida Atlantic University.

Abstract: Secondary Wall-Associated NAC Domain 1s (SND1s) are transcription factors (TFs) known to activate a cascade of TF and pathway genes affecting secondary cell wall biosynthesis (xylogenesis) in Arabidopsis and poplars. Elevated SND1 transcriptional activation leads to ectopic xylogenesis and stunted growth. Nothing is known about the upstream regulators of SND1. Here we report the discovery of a stem-differentiating xylem (SDX)-specific alternative SND1 splice variant, PtrSND1-A2IR, that acts as a dominant negative of SND1 transcriptional network genes in Populus trichocarpa. PtrSND1-A2IR derives from PtrSND1-A2, one of the four fully spliced PtrSND1 gene family members (PtrSND1-A1, -A2, -B1, and -B2). Each full-size PtrSND1 activates its own gene, and all four full-size members activate a common MYB gene (PtrMYB021). PtrSND1-A2IR represses the expression of its PtrSND1 member genes and PtrMYB021. Repression of the autoregulation of a TF family member by its only splice variant has not previously been reported in plants. PtrSND1-A2IR lacks DNA binding and transactivation abilities but retains dimerization capability. PtrSND1-A2IR is localized exclusively in cytoplasmic foci. In the presence of any full-size PtrSND1 member, PtrSND1-A2IR is translocated into the nucleus exclusively as a heterodimeric partner with full-size PtrSND1s. Our findings are consistent with a model in which the translocated PtrSND1-A2IR lacking DNA-binding and transactivating abilities can disrupt the function of full-size PtrSND1s, making them nonproductive through heterodimerization, and thereby modulating the SND1 transcriptional network. PtrSND1-A2IR may contribute to transcriptional homeostasis to avoid deleterious effects on xylogenesis and plant growth.

Dr. Vincent Chiang | EurekAlert!
Further information:
http://www.ncsu.edu

More articles from Agricultural and Forestry Science:

nachricht New gene for atrazine resistance identified in waterhemp
24.02.2017 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

nachricht Researchers discover a new link to fight billion-dollar threat to soybean production
14.02.2017 | University of Missouri-Columbia

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>