Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research Shows Mad Cow Disease Also Caused by Genetic Mutation

15.09.2008
New findings about the causes of mad cow disease show that sometimes it may be genetic.

"We now know it's also in the genes of cattle," said Juergen A. Richt, Regents Distinguished Professor of Diagnostic Medicine and Pathobiology at Kansas State University's College of Veterinary Medicine.

Until several years ago, Richt said, it was thought that the cattle prion disease bovine spongiform encephalopathy -- also called BSE or mad cow disease -- was a foodborne disease. But his team's new findings suggest that mad cow disease also is caused by a genetic mutation within a gene called Prion Protein Gene. Prion proteins are proteins expressed abundantly in the brain and immune cells of mammals.

The research shows, for the first time, that a 10-year-old cow from Alabama with an atypical form of bovine spongiform encephalopathy had the same type of prion protein gene mutation as found in human patients with the genetic form of Creutzfeldt-Jakob disease, also called genetic CJD for short. Besides having a genetic origin, other human forms of prion diseases can be sporadic, as in sporadic CJD, as well as foodborne. That is, they are contracted when people eat products contaminated with mad cow disease. This form of Creutzfeldt-Jakob disease is called variant CJD.

"Our findings that there is a genetic component to BSE are significant because they tell you we can have this disease everywhere in the world, even in so-called BSE-free countries," Richt said.

An article by Richt and colleague Mark Hall of the National Veterinary Services Laboratories in Ames, Iowa, was published online in the journal PLoS Pathogens. Richt conducted the research while working at the National Animal Disease Center operated in Ames, Iowa, by the U.S. Department of Agriculture's Agricultural Research Service.

Richt said that prion diseases including mad cow disease are referred to as "slow diseases."

"It's a slow process for infectious prion proteins to develop," he said. "That's why the disease takes a long time -- as long as several years -- to show up."

Richt said mad cow disease caused by genetics is extremely rare. A recent epidemiological study estimated that the mutation affects less than 1 in 2,000 cattle. The study was done in collaboration with the U.S. Department of Agriculture-U.S. Meat Animal Research Center in Clay Center, Neb., which is operated by the Agricultural Research Service.

Richt said the upside of knowing that mad cow disease has a genetic component is that it offers ways of stamping out the disease through selective breeding and culling of genetically affected animals. Therefore, Richt and his colleagues developed high throughput assays to offer the possibility for genetic surveillance of cattle for this rare pathogenic mutation.

"Genetic BSE we can combat," Richt said. "We have submitted a patent for a test system that can assess all bulls and cows before they're bred to see whether they have this mutation."

Richt is one of more than 150 K-Staters actively involved animal health and food safety research. He has authored or co-authored more than 80 peer-reviewed articles and recently was named to the scientific advisory board for the Scientific and Technical Review of the World Organization for Animal Health, the OIE in Paris.

Juergen A. Richt, 785-532-2793 or 785-532-4401, jricht@vet.k-state.edu

Juergen A. Richt | Newswise Science News
Further information:
http://www.k-state.edu

More articles from Agricultural and Forestry Science:

nachricht Kakao in Monokultur verträgt Trockenheit besser als Kakao in Mischsystemen
18.09.2017 | Georg-August-Universität Göttingen

nachricht Ultrasound sensors make forage harvesters more reliable
28.08.2017 | Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Glycosylation: Mapping Uncharted Territory

21.09.2017 | Life Sciences

Highly precise wiring in the Cerebral Cortex

21.09.2017 | Health and Medicine

Did marine sponges trigger the ‘Cambrian explosion’ through ‘ecosystem engineering’?

21.09.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>