Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Research Reveals Challenges in Genetically Engineered Crop Regulatory Process

09.05.2012
American Society of Agronomy and Crop Science Society of America Member Leads Team to Determine Delays

A new innovation can completely reshape an industry-- inspiring both optimism and debate. The development of genetically engineered (GE) crops in the 1980's ignited a buzz in the agricultural community with the potential for higher crop yields and better nutritional content, along with the reduction of herbicide and pesticide use.

GE crops grew to play a significant role in the U.S., with more than 160 million acres of farmland used to produce GE crops in 2011. However, the development of new GE crops has recently slowed to a trickle due to litigation over field testing and deregulation. University of Minnesota researchers Esther McGinnis, Alan Smith, and Mary Meyer set out to determine the cause of these litigation lulls responsible for slowing GE progress in the U.S.

Three federal agencies are responsible for regulating plant biotechnology in the United States. The Food and Drug Administration (FDA) oversees food and animal feed safety aspects of GE crops. The Environmental Protection Agency (EPA) is responsible for crops engineered to produce pesticidal substances. Lastly, the U.S. Department of Agriculture’s Animal and Plant Health Inspection Service (APHIS) regulates the planting of GE crops under the Plant Protection Act, introduced in 2000, to consolidate related responsibilities previously spread across various legislative statutes.

APHIS regulates GE crops if the donor organism, recipient organism, or vector or vector agent meets the plant pest definition or the APHIS administrator believes the organism to be a plant pest. The agency’s regulatory decisions have met much criticism in the last decade, inspiring the U of M research team to determine if and where APHIS may have gone wrong. The team used past lawsuits as case studies to determine whether APHIS failed to recognize the environmental impacts of GE crops and made legal errors in failing to comply with the sometimes strict procedures of U.S. environmental law.

After rising exponentially in the mid-1980s, the first commercially grown GE crop, the Flavr Savr tomato, was approved for sale in the U.S. in 1994. Many farmers since then, adopted GE crops as their own, excited by the prospects of scientific advancement and financial reward.

GE crop testing declined rapidly in 2003 in response to the first lawsuit. “Before that time, APHIS was dealing with a pretty heavy case load,” says McGinnis. “Their compliance with NEPA may have slipped and left them vulnerable to lawsuits.”

NEPA, the National Environmental Policy Act, is a U.S. national policy that was established in 1969 to promote environmental protection. NEPA requires environmental agencies to keep an in-depth administrative record of their actions that validates the agency’s rationale in reaching regulatory decisions. The lack of transparency in creating these administrative records has been a point of criticism APHIS has faced in recent years.

McGinnis and her fellow researchers also pointed out that many of the lawsuits used in their study demonstrate that APHIS failed to differentiate between traditional GE crops, such as corn, soybeans, and cotton, and new GE crops presenting considerable regulatory challenges.

Take the genetic engineering of creeping bentgrass, for example. This weedy, wind-pollinated perennial raises unique gene flow concerns that aren’t seen in more traditional herbicide-tolerant crops. APHIS has failed to distinguish novel GE crops like this one and hold them to the rigorous evaluation standards required by environmental law, which has led to lawsuits that have grounded the GE crop regulatory process to a halt.

“APHIS needs to prioritize its resources. It needs to be spending more time regulating novel crops,” says McGinnis. “I’m certainly not advocating more regulation of traditional agronomic crops. Really, it’s about focusing on these novel crops that raise more issues.”

APHIS has recently announced plans to streamline their regulatory review process of GE crops, and plans on implementing several efficiency improvements. These include executing more defined deadlines, better resource management, and earlier opportunity for public involvement.

“If APHIS can solicit public comment earlier in the regulatory process, it can more efficiently incorporate stakeholder concerns into either the environmental assessment or the environmental impact statement that it prepares in conjunction with its regulatory decision,” says McGinnis.

While APHIS says it has already begun to apply new, more efficient process steps and more defined deadlines, changes to public engagement have yet to be implemented. The agency’s complete set of revised procedures go into effect after the plans are published in the Federal Register.

The full article is available for no charge for 30 days following the date of this summary. View the abstract at https://www.crops.org/publications/cs/articles/52/3/991?highlight=cT0oJTIyTWNHaW5uaXMlMjIpJnE9KGpvdXJuYWw6Y3MpJmxlbj0

xMCZzdGFydD0xJnN0ZW09ZmFsc2Umc29ydD0%3D

Crop Science is the flagship journal of the Crop Science Society of America. Original research is peer-reviewed and published in this highly cited journal. It also contains invited review and interpretation articles and perspectives that offer insight and commentary on recent advances in crop science. For more information, visit www.crops.org/publications/cs

The Crop Science Society of America (CSSA), founded in 1955, is an international scientific society comprised of 6,000+ members with its headquarters in Madison, WI. Members advance the discipline of crop science by acquiring and disseminating information about crop breeding and genetics; crop physiology; crop ecology, management, and quality; seed physiology, production, and technology; turfgrass science; forage and grazinglands; genomics, molecular genetics, and biotechnology; and biomedical and enhanced plants.

CSSA fosters the transfer of knowledge through an array of programs and services, including publications, meetings, career services, and science policy initiatives. For more information, visit www.crops.org

Teri Barr | EurekAlert!
Further information:
http://www.crops.org
http://www.agronomy.org

More articles from Agricultural and Forestry Science:

nachricht Microjet generator for highly viscous fluids
13.02.2018 | Tokyo University of Agriculture and Technology

nachricht Sweet route to greater yields
08.02.2018 | Rothamsted Research

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>