Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A researcher at UJI puts forward a technique to identify compounds derived from the degradation of pesticides

15.10.2007
A researcher at the Institute of Pesticides and Waters of the Universitat Jaume I (UJI) has proved the efficiency of an analytical method that can detect the presence of water in substances derived from the pesticide degradation processes typically used in agriculture. The study, which is developed in the PhD thesis of María Ibáñez Martínez, opens the way forward to a more precise control of waste in the environment left by phytosanitary products since it could also be applied to potentially toxic compounds derived from the chemical decomposition of the pesticides themselves.

Pesticides are a highly important environmental problem because of their toxicity and widespread use worldwide, and also because their waste could eventually contaminate various media (soil, water, air, food) that could finally affect the development of life, especially human life. For this reason, the European Union has set very strict limits as regards the amount of waste that can be found in water and food for human consumption. Scientists have, therefore, had to develop very precise analysis techniques in order to detect the hundreds of different pesticides that are used in agriculture.

However, most control programmes for these pollutants only focus on unaltered pesticides, even though several compounds, which are derived from the environmental degradation of these relatively persistent and toxic pesticides (transformation products in scientific jargon), are known This deficit of information on the presence of transformation products in the environment is mainly due to the lack of an analytical method that is able to detect them. María Ibáñez’s work meets this need.

The method consists in combining two already existing chemical analysis techniques: liquid chromatography and mass spectrometry. To check their combined potential, Ibáñez exposed a certain group of pesticides to ultraviolet radiation. In this way, she simulated the effect that sunlight exerts on pesticides in the environment (photodegradation) in the laboratory. The global purpose was to determine which compounds the original phytosanitary product was transformed into. To this end, she combined liquid chromatography and mass spectrometry with quadrupole time–of-flight analysers.

Once the transformation products had been identified under lab conditions, the second part of the study consisted in developing an additional method which would allow to determine the presence or absence of these compounds in the environment, as well as to quantify their levels. To this end, Ibáñez used the same method but she used a triple-quadrupole analyser on this occasion.

After analysing water samples (both surface and underground) taken from various points of the Valencian Community, Ibáñez and her collaborators detected the presence of some of these transformation products.

The study has also allowed us to see the magnitude of the problem generated by the degradation of pesticide waste in soil and water, a facet of the environmental problem of phytosanitary products to which no special attention has been paid to date. “It is worth mentioning that the detection frequency of transformation products, elucidated in relation with intact pesticides, has increased and is, in many cases, higher than the concentration levels in the products themselves”, indicates María Ibáñez in her thesis.

A question that still had to be clarified was whether the new method would be able to also identify transformation products of pesticides in living organisms. Therefore, in vitro experiments with microsomes (cell cultures) and in vivo experiments with rats were conducted in collaboration with UJI’s Department of Psychobiology. Once more, the potential of this technique was evidenced, this time in the field of biology.

“Coupling liquid chromatography with mass spectrometry by using triple-quadrupole and quadrupole time-of-flight analysers has proved to be a powerful analytical tool for the identification, quantification and confirmation of transformation products and pesticide metabolites in environmental and biological samples”, María Ibáñez explains. With her work, Ibáñez opens the way forward to future studies not only on these compounds but, above all, on their effects on human health. And all this thanks to her verification of an analytical method that can detect them and can quantify these compounds.

The study of this researcher at UJI’s Institute of Pesticides and Waters has been directed by Félix Hernández and Juan Vicente Sancho, scientists from this Institute, and has been published in the form of scientific papers in international journals such as Analytical Chemistry, Analytical and Bioanalytical Chemistry, Journal of Chromatography A, Trends in Analytical Chemistry and Rapid Communications in Mass Spectrometry.

Hugo Cerdà | alfa
Further information:
http://www.uji.es

More articles from Agricultural and Forestry Science:

nachricht New 3-D model predicts best planting practices for farmers
26.06.2017 | Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign

nachricht Fighting a destructive crop disease with mathematics
21.06.2017 | University of Cambridge

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making Waves

Computer scientists use wave packet theory to develop realistic, detailed water wave simulations in real time. Their results will be presented at this year’s SIGGRAPH conference.

Think about the last time you were at a lake, river, or the ocean. Remember the ripples of the water, the waves crashing against the rocks, the wake following...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Nanostructures taste the rainbow

29.06.2017 | Physics and Astronomy

New technique unveils 'matrix' inside tissues and tumors

29.06.2017 | Life Sciences

Cystic fibrosis alters the structure of mucus in airways

29.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>