Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A researcher at UJI puts forward a technique to identify compounds derived from the degradation of pesticides

15.10.2007
A researcher at the Institute of Pesticides and Waters of the Universitat Jaume I (UJI) has proved the efficiency of an analytical method that can detect the presence of water in substances derived from the pesticide degradation processes typically used in agriculture. The study, which is developed in the PhD thesis of María Ibáñez Martínez, opens the way forward to a more precise control of waste in the environment left by phytosanitary products since it could also be applied to potentially toxic compounds derived from the chemical decomposition of the pesticides themselves.

Pesticides are a highly important environmental problem because of their toxicity and widespread use worldwide, and also because their waste could eventually contaminate various media (soil, water, air, food) that could finally affect the development of life, especially human life. For this reason, the European Union has set very strict limits as regards the amount of waste that can be found in water and food for human consumption. Scientists have, therefore, had to develop very precise analysis techniques in order to detect the hundreds of different pesticides that are used in agriculture.

However, most control programmes for these pollutants only focus on unaltered pesticides, even though several compounds, which are derived from the environmental degradation of these relatively persistent and toxic pesticides (transformation products in scientific jargon), are known This deficit of information on the presence of transformation products in the environment is mainly due to the lack of an analytical method that is able to detect them. María Ibáñez’s work meets this need.

The method consists in combining two already existing chemical analysis techniques: liquid chromatography and mass spectrometry. To check their combined potential, Ibáñez exposed a certain group of pesticides to ultraviolet radiation. In this way, she simulated the effect that sunlight exerts on pesticides in the environment (photodegradation) in the laboratory. The global purpose was to determine which compounds the original phytosanitary product was transformed into. To this end, she combined liquid chromatography and mass spectrometry with quadrupole time–of-flight analysers.

Once the transformation products had been identified under lab conditions, the second part of the study consisted in developing an additional method which would allow to determine the presence or absence of these compounds in the environment, as well as to quantify their levels. To this end, Ibáñez used the same method but she used a triple-quadrupole analyser on this occasion.

After analysing water samples (both surface and underground) taken from various points of the Valencian Community, Ibáñez and her collaborators detected the presence of some of these transformation products.

The study has also allowed us to see the magnitude of the problem generated by the degradation of pesticide waste in soil and water, a facet of the environmental problem of phytosanitary products to which no special attention has been paid to date. “It is worth mentioning that the detection frequency of transformation products, elucidated in relation with intact pesticides, has increased and is, in many cases, higher than the concentration levels in the products themselves”, indicates María Ibáñez in her thesis.

A question that still had to be clarified was whether the new method would be able to also identify transformation products of pesticides in living organisms. Therefore, in vitro experiments with microsomes (cell cultures) and in vivo experiments with rats were conducted in collaboration with UJI’s Department of Psychobiology. Once more, the potential of this technique was evidenced, this time in the field of biology.

“Coupling liquid chromatography with mass spectrometry by using triple-quadrupole and quadrupole time-of-flight analysers has proved to be a powerful analytical tool for the identification, quantification and confirmation of transformation products and pesticide metabolites in environmental and biological samples”, María Ibáñez explains. With her work, Ibáñez opens the way forward to future studies not only on these compounds but, above all, on their effects on human health. And all this thanks to her verification of an analytical method that can detect them and can quantify these compounds.

The study of this researcher at UJI’s Institute of Pesticides and Waters has been directed by Félix Hernández and Juan Vicente Sancho, scientists from this Institute, and has been published in the form of scientific papers in international journals such as Analytical Chemistry, Analytical and Bioanalytical Chemistry, Journal of Chromatography A, Trends in Analytical Chemistry and Rapid Communications in Mass Spectrometry.

Hugo Cerdà | alfa
Further information:
http://www.uji.es

More articles from Agricultural and Forestry Science:

nachricht Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli
26.04.2017 | University of the Basque Country

nachricht New data unearths pesticide peril in beehives
21.04.2017 | Cornell University

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>