Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A researcher at UJI puts forward a technique to identify compounds derived from the degradation of pesticides

15.10.2007
A researcher at the Institute of Pesticides and Waters of the Universitat Jaume I (UJI) has proved the efficiency of an analytical method that can detect the presence of water in substances derived from the pesticide degradation processes typically used in agriculture. The study, which is developed in the PhD thesis of María Ibáñez Martínez, opens the way forward to a more precise control of waste in the environment left by phytosanitary products since it could also be applied to potentially toxic compounds derived from the chemical decomposition of the pesticides themselves.

Pesticides are a highly important environmental problem because of their toxicity and widespread use worldwide, and also because their waste could eventually contaminate various media (soil, water, air, food) that could finally affect the development of life, especially human life. For this reason, the European Union has set very strict limits as regards the amount of waste that can be found in water and food for human consumption. Scientists have, therefore, had to develop very precise analysis techniques in order to detect the hundreds of different pesticides that are used in agriculture.

However, most control programmes for these pollutants only focus on unaltered pesticides, even though several compounds, which are derived from the environmental degradation of these relatively persistent and toxic pesticides (transformation products in scientific jargon), are known This deficit of information on the presence of transformation products in the environment is mainly due to the lack of an analytical method that is able to detect them. María Ibáñez’s work meets this need.

The method consists in combining two already existing chemical analysis techniques: liquid chromatography and mass spectrometry. To check their combined potential, Ibáñez exposed a certain group of pesticides to ultraviolet radiation. In this way, she simulated the effect that sunlight exerts on pesticides in the environment (photodegradation) in the laboratory. The global purpose was to determine which compounds the original phytosanitary product was transformed into. To this end, she combined liquid chromatography and mass spectrometry with quadrupole time–of-flight analysers.

Once the transformation products had been identified under lab conditions, the second part of the study consisted in developing an additional method which would allow to determine the presence or absence of these compounds in the environment, as well as to quantify their levels. To this end, Ibáñez used the same method but she used a triple-quadrupole analyser on this occasion.

After analysing water samples (both surface and underground) taken from various points of the Valencian Community, Ibáñez and her collaborators detected the presence of some of these transformation products.

The study has also allowed us to see the magnitude of the problem generated by the degradation of pesticide waste in soil and water, a facet of the environmental problem of phytosanitary products to which no special attention has been paid to date. “It is worth mentioning that the detection frequency of transformation products, elucidated in relation with intact pesticides, has increased and is, in many cases, higher than the concentration levels in the products themselves”, indicates María Ibáñez in her thesis.

A question that still had to be clarified was whether the new method would be able to also identify transformation products of pesticides in living organisms. Therefore, in vitro experiments with microsomes (cell cultures) and in vivo experiments with rats were conducted in collaboration with UJI’s Department of Psychobiology. Once more, the potential of this technique was evidenced, this time in the field of biology.

“Coupling liquid chromatography with mass spectrometry by using triple-quadrupole and quadrupole time-of-flight analysers has proved to be a powerful analytical tool for the identification, quantification and confirmation of transformation products and pesticide metabolites in environmental and biological samples”, María Ibáñez explains. With her work, Ibáñez opens the way forward to future studies not only on these compounds but, above all, on their effects on human health. And all this thanks to her verification of an analytical method that can detect them and can quantify these compounds.

The study of this researcher at UJI’s Institute of Pesticides and Waters has been directed by Félix Hernández and Juan Vicente Sancho, scientists from this Institute, and has been published in the form of scientific papers in international journals such as Analytical Chemistry, Analytical and Bioanalytical Chemistry, Journal of Chromatography A, Trends in Analytical Chemistry and Rapid Communications in Mass Spectrometry.

Hugo Cerdà | alfa
Further information:
http://www.uji.es

More articles from Agricultural and Forestry Science:

nachricht Researchers discover a new link to fight billion-dollar threat to soybean production
14.02.2017 | University of Missouri-Columbia

nachricht Important to maintain a diversity of habitats in the sea
14.02.2017 | University of Gothenburg

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>