Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Knowing when the bridge breaks - wireless sensor network to assess building damage early

10.10.2007
Damage commonly occurs in buildings when a component fails suddenly with a partial or total collapse as a consequence. This type of event leads to serious damage to property and if it is a bridge or a large hall, then people in particular are at risk.

The often great age of bridges and the increasing volume of traffic (particularly heavy traffic) which they are expected to carry are in clear contradiction to each other. Thus the probability increases that the load-bearing capacity of a bridge decreases rapidly and often unnoticed with sometimes dire consequences.

In order to prevent such accidents, the Federal Institute for Materials Research and Testing and the Berlin-based ScatterWeb Company are currently developing a special radio-based, self-configuring measuring system. This measuring system consists of a number of identically designed sensors which are self-sustaining, need no wiring, can act as both transmitters and receivers and are equipped with a special sensor technology making long-term monitoring of buildings or engineering facilities possible. This in particular applies to buildings and structures for transport and traffic and large-scale industrial facilities, where a subsequent wiring installation is difficult or impossible.

In order to reliably monitor large or inaccessible objects over the long term, the radio range must be sufficient. The sensor unit uses strain gauges for stress analysis and contains interfaces for additional sensors. In addition, all components must exhibit a high accuracy of measurement and high energy-efficiency. The high network stability required can be ensured by the so-called multihop architecture which enables the exchange of failed modules and the integration of additional modules without interrupting the network operation.

The project is supported by the Federal Ministry of Economics and Technology and unites two partners, both of whom are in a leading position in their fields. BAM's Division "Measurement and Testing Technology, Sensors" provides its competence in the field of sensor technology, experimental structure monitoring and early damage assessment while the ScatterWeb Company is prominent in the field of self-configuring wireless mesh networking.

Contact:
Dr.-Ing. Matthias Bartholmai
Division VIII.1 "Measurement and Testing Technology, Sensors"
Federal Institute for Materials Research and Testing (BAM)
12200 Berlin
Phone: +49 30 8104-1912
Fax: +49 30 8104-1917
Email: matthias.bartholmai@bam.de
Janis Anders
ScatterWeb GmbH
Charlottenstr. 16
10117 Berlin
Phone: +49 30 8020838-0
Fax: +49 30 8020838-11
Email: anders@scatterweb.net

Dr. Ulrike Rockland | idw
Further information:
http://www.bam.de

More articles from Agricultural and Forestry Science:

nachricht Alkaline soil, sensible sensor
03.08.2017 | American Society of Agronomy

nachricht New 3-D model predicts best planting practices for farmers
26.06.2017 | Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>