Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers clone aluminum-tolerance gene in sorghum, promising boost to crop yields in developing world

28.08.2007
When soils are too acidic, aluminum that is locked up in clay minerals dissolves into the soil as toxic, electrically charged particles called ions, making it hard for most plants to grow. In fact, aluminum toxicity in acidic soils limits crop production in as much as half the world's arable land, mostly in developing countries in Africa, Asia and South America.

Now, Cornell researchers have cloned a novel aluminum-tolerant gene in sorghum and expect to have new genetically-engineered aluminum-tolerant sorghum lines by next year.

The research, to be published in the September issue of Nature Genetics, provides insights into how specialized proteins in the root tips of some cultivars of sorghum and such related species as wheat and maize can boost aluminum tolerance in crops.

Sorghum is an important food crop in Africa, Central America and South Asia and is the world's fifth most important cereal crop.

"My lab has been working to identify the physiological mechanisms of plant aluminum tolerance as well as its molecular basis," said Leon Kochian, the paper's senior author, a Cornell adjunct professor of plant biology and director of the U.S. Department of Agriculture--Agriculture Research Service (USDA-ARS) Plant, Soil and Nutrition Laboratory at Cornell. "The reason this is significant is there are extensive areas of the earth's lands that are highly acidic, with pH of 5 or below [pH below 7 is considered acidic]. Most of these areas are in the tropics or subtropics, where many developing countries are located."

Kochian's research shows that in aluminum-tolerant sorghum varieties, special proteins in the root tip release citric acid into the soil in response to aluminum exposure. Citric acid binds aluminum ions very effectively, preventing the toxic metal from entering the roots.

Kochian and colleagues, including the paper's first author, Jurandir Magalhaes, who received his Ph.D. from Cornell in Kochian's lab and now directs his own lab at the Embrapa Maize and Sorghum Research Center in Brazil, used genetic mapping to identify a single gene that encodes a novel membrane-transporter protein responsible for the citric acid release. The gene, they discovered, is only turned on to express the protein and transport citric acid when aluminum ions are present in the surrounding soil.

The researchers have now used the sorghum gene to engineer transgenic aluminum-tolerant Arabidopsis thaliana (a small mustard plant used in plant research because of its small genome and short life cycle) and wheat plants. Sorghum is harder to genetically transform, Kochian said.

The map-based cloning of this agronomically important gene in sorghum is helping advance this species as a model for further exploring the mechanisms of aluminum tolerance and discovering new molecular genetic solutions to improving crop yields, Kochian said.

"This research also has environmental implications for badly needed increases in food production on marginal soils in developing countries," said Kochian. "For example, if we can increase food production on existing lands, it could limit encroachment into other areas for agriculture."

The research is supported in part by the McKnight Foundation Collaborative Crop Research Program, the Generation Challenge Program, the National Science Foundation and the USDA-ARS.

Press Relations Office | EurekAlert!
Further information:
http://www.cornell.edu

More articles from Agricultural and Forestry Science:

nachricht Six-legged livestock -- sustainable food production
11.05.2017 | Faculty of Science - University of Copenhagen

nachricht Elephant Herpes: Super-Shedders Endanger Young Animals
04.05.2017 | Universität Zürich

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Supercomputing helps researchers understand Earth's interior

23.05.2017 | Earth Sciences

Study identifies RNA molecule that shields breast cancer stem cells from immune system

23.05.2017 | Life Sciences

Turmoil in sluggish electrons’ existence

23.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>