Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Change on the range

15.08.2007
Learning exercise gives insight to land managers and scientists on range management strategies during climatic changes

In the Southwestern U.S., land managers face equally critical and difficult decisions when it comes to their ranges. The region is known for its climate variability which has strong influences and impacts on range conditions. Access to the latest climate and range science information is vital for managers to make effective short and long-term decisions. An experiential learning exercise was held at a meeting in January, 2006 to open communication between land managers and scientists about climate and range science concepts.

The main objective of the exercise was to challenge range managers to explore how long-term temperature changes and precipitation distribution may impact their management strategies. Adjustment of planning time was also stressed for adaptation to climatic conditions. Participants explored potential plans for rangelands under changing climates. Description and outcomes of this event were published in the 2007 volume 36 of Journal of Natural Resources and Life Sciences Education.

The exercise consisted of several rounds where management decisions had to be made in certain climate conditions. Groups of five to 10 individuals were given situational and financial restraints with a 1,000 acre parcel of land. Its condition was determined by chance for six decision periods that represented 60 years. Each round, groups discussed potential changes to and transitions of their land based on interactions between its initial state, any disturbances and the data of climate changes by each decade. The groups used management strategies to either keep their land in its original state or improve its condition. The purpose of this exercise was to give an opportunity to investigate the complexities in range management decisions based on climate change at the small group level.

According to the study’s authors, the exercise was valuable to its participants who took an active role in making management decisions. They became more comfortable with the concepts of climate change, working with state and transition models and working together with scientists and/or land managers. It was also effective in increasing awareness of the impacts of long-term temperature and precipitation changes on their management strategies.

Evaluation results indicated that the exercise was useful in creating small group discussions between scientists and managers on the complex interactions between short and long-term climate changes and management decisions. It also identified strengths and weaknesses of the state and transition approach and highlighting information gaps for everyday decision making.

Though designed for use in semi-desert grasslands, the exercise could be adapted for use in any part of the country. Required adaptations would include selecting a local major land resource area (MLRA); modifying the initial state of the parcel, the management objectives, and the potential environmental disturbances appropriate for the area. Relevant temperature and precipitation datasets would need to be developed based on climate change projections for the region also.

Sara Uttech | EurekAlert!
Further information:
http://www.agronomy.org

More articles from Agricultural and Forestry Science:

nachricht Plasma-zapping process could yield trans fat-free soybean oil product
02.12.2016 | Purdue University

nachricht New findings about the deformed wing virus, a major factor in honey bee colony mortality
11.11.2016 | Veterinärmedizinische Universität Wien

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>