Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plants and stress; key players on the thin line between life and death revealed

02.08.2007
Our crops are not doing well these days: too much water, too little sunlight...

In short, they are suffering from stress. Scientists from VIB, associated with the Katholieke Universiteit Leuven (K.U.Leuven), have revealed a new mechanism demonstrating the intricate ways in which plants deal with stress. The newly discovered control system has a remarkable way of orchestrating the activity of hundreds of genes, forcing the plant into ‘safety mode’; the consumption of energy is contained while the organism is stimulated to mobilize reserves. This may have a negative impact on growth, but it allows the plant to temporarily safeguard itself against pernicious stress conditions. These findings also may prove to be useful beyond the case of plants, for the results are likely to be valuable in understanding disorders such as cancer and diabetes.

Life thanks to plants

Plants catch sunlight and use it as an energy source to produce sugars from CO2 and water. In doing so, they are at the very basis of the food chain. Ultimately, all life on earth depends upon this biochemical process: photosynthesis. Without plants, life as we know it today would simply not be possible. But what if things go wrong? When there is too little sunlight, for example? And what with other stressful conditions for plants? Environmental changes can compromise photosynthesis and exhaust energy supplies.

Plants control their own energy balance

Fortunately, plants have developed different mechanisms to detect and cope with 'stress’. Together with his American colleagues at Harvard Medical School (Boston, USA), VIB scientist Filip Rolland, associated with the Katholieke Universiteit Leuven, is uncovering a new system of detection and control. It is driven by KIN10 and KIN11. These ‘kinases’ – which are also found in human beings – react to energy shortages, when, for example, there is too little sunlight or too little sugar production. They control the activity of a broad network of genes, promoting the release of energy (catabolism) from alternative sources and blocking its assimilation (anabolism). In this way, the plant protects itself against stress conditions; like a really bad summer.

The key players: KIN10 & KIN11

The model organism for this study was Arabidopsis thaliana or thale cress. For decades, this small weed has been used as a model in molecular and genetic plant research. The scientists have tested numerous stress conditions that affect photosynthesis and energy production, such as darkness, herbicide treatment and flooding (lack of oxygen). By overexpressing the KIN10 gene, causing the plant to produce more of this protein, stress tolerance is increased and plants survive longer. By switching off these genes, their control function is eliminated.

With this research, the Flemish and American scientists have succeeded for the first time in attributing KIN10 and KIN11 a key role in the control of the plant energy budget and metabolism and thus the fragile balance between growth and survival; in short, the choice between life and death.

Are humans similar to plants?

The new insights gained by this study are not limited to the functioning of plants; they may also be important for human beings. KIN10 and KIN11, as ’fuel gauges’ controlling the expression of a whole set of genes, are also found in mammals. The results with plants, therefore, may play a pioneering role in discovering new functions of these proteins in disorders such as diabetes, cancer, obesitas, and aging.

Ann Van Gysel | alfa
Further information:
http://www.vib.be

More articles from Agricultural and Forestry Science:

nachricht Plasma-zapping process could yield trans fat-free soybean oil product
02.12.2016 | Purdue University

nachricht New findings about the deformed wing virus, a major factor in honey bee colony mortality
11.11.2016 | Veterinärmedizinische Universität Wien

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>