Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Getting to the root of plant growth

27.06.2007
A £9.2m research centre at The University of Nottingham will break new ground in our understanding of plant growth and could lead to the development of drought-resistant crops for developing countries.

The Centre for Plant Integrative Biology (CPIB) will focus on cutting-edge research into plant biology — particularly the little-studied area of root growth, function and response to environmental cues.

A greater understanding of plant roots, particularly how they respond to different levels of moisture, nutrients and salt in the soil, could pave the way for the development of new drought-resistant crops that can thrive in arid areas and coastal margins of the developing world.

Because it is difficult to study roots — as all their growth occurs below ground level — scientists will develop a ‘virtual root’ using the latest mathematical modelling techniques. By developing computer models of the root that exactly mimic biological processes, they will be able to observe what is happening at every stage from the molecular scale upwards.

Research in this area is crucial because the roots dictate life or death for a plant through uptake of water and nutrients, and response to environmental factors.

The CPIB, which is based at The University of Nottingham’s Sutton Bonington Campus, has its official opening on July 2, 2007.

Professor Charlie Hodgman, Principal Director of the CPIB, said: “CPIB aims to set a prime example of how multidisciplinary teams can bring novel ideas to and discoveries in crucial aspects of plant science.”

CPIB brings together experts from four different Schools at the University — Biosciences, Computer Science & IT, Mathematical Sciences, and Mechanical, Materials and Manufacturing Engineering.

They will create a ‘virtual root’ of the simple weed Arabidopsis, a species of the Brassica family routinely used for molecular genetic studies. Expertise in Arabidopsis research is already well developed at the Nottingham Arabidopsis Stock Centre, which integrally linked with CPIB.

This expertise will then be broadened into crop species. CPIB researchers ultimately aim to integrate their ‘virtual root’ with those of other international projects that model shoot and leaf development, leading to a generic computer model of a whole plant which will again be used to advance crop and plant science.

Representatives from UK research councils, industry, publishers, and external academics will gather at the opening event on July 2 with University of Nottingham staff from the four academic schools involved. The event will feature talks by members of the CPIB and invited speakers, including:

- Professor Philip Benfey, Duke University, USA
- Professor Jonathan Lynch, Penn State University, USA
- Professor Peter Hunter, University of Auckland, New Zealand.
CPIB is funded by the Systems Biology joint initiative of BBSRC and EPSRC, which has provided £27M for six specialised centres across the UK.

More details of the CPIB and its official opening are available from Dr Susannah Lydon on Susannah.lydon@nottingham.ac.uk

Emma Thorne | alfa
Further information:
http://www.nottingham.ac.uk

More articles from Agricultural and Forestry Science:

nachricht Faba fix for corn's nitrogen need
11.04.2018 | American Society of Agronomy

nachricht Wheat research discovery yields genetic secrets that could shape future crops
09.04.2018 | John Innes Centre

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Structured light and nanomaterials open new ways to tailor light at the nanoscale

23.04.2018 | Physics and Astronomy

On the shape of the 'petal' for the dissipation curve

23.04.2018 | Physics and Astronomy

Clean and Efficient – Fraunhofer ISE Presents Hydrogen Technologies at the HANNOVER MESSE 2018

23.04.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>