Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Getting to the root of plant growth

27.06.2007
A £9.2m research centre at The University of Nottingham will break new ground in our understanding of plant growth and could lead to the development of drought-resistant crops for developing countries.

The Centre for Plant Integrative Biology (CPIB) will focus on cutting-edge research into plant biology — particularly the little-studied area of root growth, function and response to environmental cues.

A greater understanding of plant roots, particularly how they respond to different levels of moisture, nutrients and salt in the soil, could pave the way for the development of new drought-resistant crops that can thrive in arid areas and coastal margins of the developing world.

Because it is difficult to study roots — as all their growth occurs below ground level — scientists will develop a ‘virtual root’ using the latest mathematical modelling techniques. By developing computer models of the root that exactly mimic biological processes, they will be able to observe what is happening at every stage from the molecular scale upwards.

Research in this area is crucial because the roots dictate life or death for a plant through uptake of water and nutrients, and response to environmental factors.

The CPIB, which is based at The University of Nottingham’s Sutton Bonington Campus, has its official opening on July 2, 2007.

Professor Charlie Hodgman, Principal Director of the CPIB, said: “CPIB aims to set a prime example of how multidisciplinary teams can bring novel ideas to and discoveries in crucial aspects of plant science.”

CPIB brings together experts from four different Schools at the University — Biosciences, Computer Science & IT, Mathematical Sciences, and Mechanical, Materials and Manufacturing Engineering.

They will create a ‘virtual root’ of the simple weed Arabidopsis, a species of the Brassica family routinely used for molecular genetic studies. Expertise in Arabidopsis research is already well developed at the Nottingham Arabidopsis Stock Centre, which integrally linked with CPIB.

This expertise will then be broadened into crop species. CPIB researchers ultimately aim to integrate their ‘virtual root’ with those of other international projects that model shoot and leaf development, leading to a generic computer model of a whole plant which will again be used to advance crop and plant science.

Representatives from UK research councils, industry, publishers, and external academics will gather at the opening event on July 2 with University of Nottingham staff from the four academic schools involved. The event will feature talks by members of the CPIB and invited speakers, including:

- Professor Philip Benfey, Duke University, USA
- Professor Jonathan Lynch, Penn State University, USA
- Professor Peter Hunter, University of Auckland, New Zealand.
CPIB is funded by the Systems Biology joint initiative of BBSRC and EPSRC, which has provided £27M for six specialised centres across the UK.

More details of the CPIB and its official opening are available from Dr Susannah Lydon on Susannah.lydon@nottingham.ac.uk

Emma Thorne | alfa
Further information:
http://www.nottingham.ac.uk

More articles from Agricultural and Forestry Science:

nachricht Combination of Resistance Genes Offers Better Protection for Wheat against Powdery Mildew
22.01.2018 | Universität Zürich

nachricht New study shows producers where and how to grow cellulosic biofuel crops
17.01.2018 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optical Nanoscope Allows Imaging of Quantum Dots

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together with colleagues from the University of Bochum, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute reported the findings in the journal Nature Photonics.

Microscopes allow us to see structures that are otherwise invisible to the human eye. However, conventional optical microscopes cannot be used to image...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Rutgers scientists discover 'Legos of life'

23.01.2018 | Life Sciences

Seabed mining could destroy ecosystems

23.01.2018 | Earth Sciences

Transportable laser

23.01.2018 | Physics and Astronomy

VideoLinks Science & Research
Overview of more VideoLinks >>>