Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

CCD phenomenon in America and Europe: Could the solution be found in Africa?

11.05.2007
The solution to the Collapse Colony Disorder (CCD), a phenomenon that has baffled beekeepers and researchers in America and Europe, may just be found in Africa.

Characterised by the sudden mass exodus of bees from their hives, CCD was first reported in America in November 2006, and has rapidly spread to over 20 American States. Some CCD cases have also been reported in Greece, Italy, Poland, Portugal and Spain. CCD is increasingly becoming a crisis, causing beekeepers losses of between 30 – 90% and posing a potential threat in European agriculture, where honeybees are of great economic importance.

A study by scientists from the Nairobi-headquartered icipe – African Insect Science for Food and Health, conducted jointly with colleagues from the United States Department of Agriculture (USDA), suggests that there could be a link between microganisms from invasive species, such as the small hive beetle, recently introduced into the US from Africa. In their findings, published in the Proceedings of the National Academy of Sciences of the United States of America (PNAS, 4th May 2007), the researchers observe that, though of no consequence to African honeybees, the small hive beetle decimates European honeybee colonies with impunity through a fungus that it carries.

“Beetles are scavengers and their job is to clean up. In the case of the small hive beetle, it uses a fungus to digest left-over pollen, from which it gets its nutrients. This fungus causes fermentation, in effect causing a change in the chemistry in the hives. Since bees are very sensitive to such variations, they eventually abandon the hives,” explains icipe scientist, Dr Baldwyn Torto.

He adds that African honeybees are generally highly hygienic; they don’t allow debris to accumulate in their hives, so there is little for the small hive beetles to scavenge and to support growth and establishment of other microorganisms. In addition, because of having to constantly deal with a wide diversity of tropical microorganisms while foraging, the African honeybees have evolved ways to fight diseases more effectively, and respond more quickly to any new challenges. On the other hand, says Dr Torto, European honeybees unlike their African cousins are unable to effectively inhibit infestations by this beetle.

“Knowing what allows African honeybees to survive attacks under the tough tropical conditions, and introducing these components into European honeybees, might be a step towards resolving the CCD,” says Dr Torto.

Liz Nganga | alfa
Further information:
http://www.pnas.org/cgi/content/abstract/0702813104v1

More articles from Agricultural and Forestry Science:

nachricht Energy crop production on conservation lands may not boost greenhouse gases
13.03.2017 | Penn State

nachricht How nature creates forest diversity
07.03.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>