Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

FSU anthropologist finds earliest evidence of maize farming in Mexico

11.04.2007
A Florida State University anthropologist has new evidence that ancient farmers in Mexico were cultivating an early form of maize, the forerunner of modern corn, about 7,300 years ago - 1,200 years earlier than scholars previously thought.

Professor Mary Pohl conducted an analysis of sediments in the Gulf Coast of Tabasco, Mexico, and concluded that people were planting crops in the "New World" of the Americas around 5,300 B.C. The analysis extends Pohl's previous work in this area and validates principles of microfossil data collection.

The results of Pohl's study, which she conducted along with Dolores R. Piperno of the National Museum of Natural History in Washington, D.C. and the Smithsonian Tropical Research Institute in the Republic of Panama, Kevin O. Pope of Geo Arc Research and John G. Jones of Washington State University, will be published in the April 9-13 edition of the journal Proceedings of the National Academy of Sciences.

"This research expands our knowledge on the transition to agriculture in Mesoamerica," Pohl said. "These are significant new findings that fill out knowledge of the patterns of early farming. It expands on research that demonstrates that maize spread quickly from its hearth of domestication in southwest Mexico to southeast Mexico and other tropical areas in the New World including Panama and South America."

The shift from foraging to the cultivation of food was a significant change in lifestyle for these ancient people and laid the foundation for the later development of complex society and the rise of the Olmec civilization, Pohl said. The Olmecs predated the better known Mayans by about 1,000 years.

"Our study shows that these early maize cultivators located themselves on barrier islands between the sea and coastal lagoons, where they could continue to fish as well as grow crops," she said.

During her field work in Tabasco seven years ago, Pohl found traces of pollen from primitive maize and evidence of forest clearing dating to about 5,100 B.C. Pohl's current study analyzed phytoliths, the silica structure of the plant, which puts the date of the introduction of maize in southeastern Mexico 200 years earlier than her pollen data indicated. It also shows that maize was present at least a couple hundred years before the major onset of forest clearing. Traces of charcoal found in the soil in 2000 indicated the ancient farmers used fire to clear the fields on beach ridges to grow the crops.

"This significant environmental impact of maize cultivation was surprisingly early," she said. "Scientists are still considering the impact of tropical agriculture and forest clearing, now in connection with global warming."

The phytolith study also was able to confirm that the plant was, in fact, domesticated maize as opposed to a form of its ancestor, a wild grass known as teosinte. Pohl and her colleagues were unable to make the distinction after the pollen study. Primitive maize was probably domesticated from teosinte and transported to the Gulf Coast lowlands where it was cultivated, according to Pohl.

The discovery of cultivated maize in Tabasco, a tropical lowland area of Mexico, challenges previously held ideas that Mesoamerican farming originated in the semi-arid highlands of Mexico and shows an early exchange of food plants.

Pohl's PNAS article also addresses misconceptions about the paleoecological method, which recovers microfossil evidence, such as pollen, starch grains, or phytoliths, as opposed to macrofossils or whole plant parts, such as maize cobs. Pohl and her colleagues argue that contamination of samples through the geological processes of sediment mixing is more likely to occur with macrofossils than microfossils.

Mary Pohl | EurekAlert!
Further information:
http://www.fsu.edu

More articles from Agricultural and Forestry Science:

nachricht Cascading use is also beneficial for wood
11.12.2017 | Technische Universität München

nachricht The future of crop engineering
08.12.2017 | Max-Planck-Institut für Biochemie

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>