Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Trees to offset the carbon footprint?

11.04.2007
How effective are new trees in offsetting the carbon footprint? A new study suggests that the location of the new trees is an important factor when considering such carbon offset projects. Planting and preserving forests in the tropics is more likely to slow down global warming.

But the study concludes that planting new trees in certain parts of the planet may actually warm the Earth.

The new study, which combines climate and carbon-cycle effects of large-scale deforestation in a fully interactive three-dimensional climate-carbon model, confirms that planting more tropical rainforests could help slow global warming worldwide.

The research, led by Lawrence Livermore National Laboratory atmospheric scientist Govindasamy Bala, appears in the April 9-13 online edition of the Proceedings of the National Academy of Sciences.

According to the study, new forests in mid- to high-latitude locations could actually create a net warming. Specifically, more trees in mid-latitude locations like the United States and most of Europe would only create marginal benefits from a climate perspective. But those extra trees in the boreal forests of Canada, Scandinavia and Siberia could actually be counterproductive, Bala said.

Forests affect climate in three different ways: they absorb the greenhouse gas – carbon dioxide – from the atmosphere and help keep the planet cool; they evaporate water to the atmosphere and increase cloudiness, which also helps keep the planet cool; and they are dark and absorb sunlight (the albedo effect), warming the Earth. Previous climate change mitigation strategies that promote planting trees have taken only the first effect into account.

"Our study shows that only tropical rainforests are strongly beneficial in helping slow down global warming," Bala said. "It is a win-win situation in the tropics because trees in the tropics, in addition to absorbing carbon dioxide, promote convective clouds that help to cool the planet. In other locations, the warming from the albedo effect either cancels or exceeds the net cooling from the other two effects."

Other researchers from the Carnegie Institution, Stanford and Université Montpellier II, France also contributed to the report.

The study concludes that by the year 2100, forests in mid- and high-latitudes will make some places up to 10 degrees Fahrenheit warmer than would have occurred if the forests did not exist.

The authors caution that the cooling from deforestation outside the tropics should not be viewed as a strategy for mitigating climate change. "Preservation of ecosystems is a primary goal of preventing global warming, and the destruction of ecosystems to prevent global warming would be a counterproductive and perverse strategy," said Ken Caldeira, from the Carnegie Institution and a co-author of this report.

"Apart from their role in altering the planet's climate, forests are valuable in many other aspects," Bala said. "Forests provide natural habitat to plants and animals, preserve the biodiversity, produce economically valuable timber and firewood, protect watersheds and indirectly prevent ocean acidification.

"In planning responses to global challenges, it is important to pursue broad goals and avoid narrow criteria that may lead to environmentally harmful consequences," Caldeira said.

Anne Stark | EurekAlert!
Further information:
http://www.llnl.gov/PAO

More articles from Agricultural and Forestry Science:

nachricht Plasma-zapping process could yield trans fat-free soybean oil product
02.12.2016 | Purdue University

nachricht New findings about the deformed wing virus, a major factor in honey bee colony mortality
11.11.2016 | Veterinärmedizinische Universität Wien

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>