Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Producing medicines in plant seeds

Using plants to produce useful proteins could be an inexpensive alternative to current medicine production methods. Researchers from the Flanders Interuniversity Institute for Biotechnology (VIB) at Ghent University have succeeded in producing in plant seeds proteins that have a very strong resemblance to antibodies.

They have also demonstrated that these antibody variants are just as active as the whole antibodies that occur naturally in humans. By virtue of their particular action, antibodies are very useful for therapeutic and diagnostic applications. From this research, it is now also clear that these kinds of antibody variants can be used in medical applications and that it is possible to produce them in the seeds of plants, which can have enormous advantages over conventional production methods.

Production of biotech medicines

A large number of today’s medicines are made with the aid of biotechnology (and this number should only grow in the future). To do this, scientists use genetically modified bacteria, yeasts, or animal cells that are able to produce human proteins. These proteins are then purified and administered as medicines. Examples of such proteins are antibodies, which can be used, for instance, in the treatment of cancer. The conventional methods for producing antibodies work well, but they are expensive and have a limited production capacity. The high costs are primarily due to the need for well-equipped production labs and to the labor-intensive upkeep of the animal cells, which are needed as production units.

Plants: a possible alternative?

For a number of years now, the VIB researchers in Ghent - Bart Van Droogenbroeck, Ann Depicker and Geert De Jaeger- have been searching for ways to have plants produce useful proteins efficiently. Plants do offer a lot of advantages over conventional production methods. Because production with plants doesn’t require expensive high-tech laboratories, scientists anticipate that, by working with plants, production costs will be 10 to 100 times lower. Another important advantage is that large-scale production is possible without having to make additional investments in expensive fermentors.

A good yield guaranteed

Several years ago, Geert De Jaeger and his colleagues succeeded in achieving a high yield of an antibody variant in plants, which had been very difficult to do up to that time. The trick the researchers used was to modify the plants in such a way that they would produce the antibody variant in their seeds. With their special technique, the scientists succeeded in producing seeds in which the desired protein is good for more than one third of the total protein amount. This is a huge proportion compared to other systems - normally, scientists succeed in replacing only 1% of the plant’s proteins by the desired protein.

Plant seeds are especially attractive as production units. In addition to a high production capacity, they offer other important advantages over other parts of the plant. The seeds can be stored for a long time without losing the produced protein’s effectiveness, so that a reserve can always be kept on hand. This means that the proteins can be isolated from the seeds at the moment that they are actually needed. With production in leaves, for example - or with conventional production methods - such lengthy storage is not possible: the protein must be isolated immediately after production. So, production in plant seeds provides the clear advantage of timely processing.

High production of an efficient antibody variant

The antibody variant that has been produced by Geert De Jaeger and his team has a very simple structure and has only one binding place for a particular substance. Bart Van Droogenbroeck and his colleagues, under the direction of Ann Depicker, are now showing that it is also possible to produce more complex antibody variants in large quantities in the seeds of the Arabidopsis plant. Over 10% of the proteins in the seeds of these plants are the desired antibody variant. As is the case with whole antibodies, these more complex antibody variants have two binding places for a specified substance. This close similarity to whole antibodies makes these antibody variants extremely useful for therapeutic and diagnostic applications.

However, the production of proteins in plants is completed in a different way than in humans. Therefore, to be certain that this different completion process does not affect the effectiveness of the potential medicine; the scientists have subjected the action of the antibody variant to an exhaustive battery of tests. These laboratory tests have shown that the antibody variants produced in plants are just as effective as whole human antibodies in protecting animal cells against infection with the Hepatitis A virus.

This is a significant step forward in making protein production in plants a real alternative to current production methods.

Sooike Stoops | alfa
Further information:

More articles from Agricultural and Forestry Science:

nachricht Forest Management Yields Higher Productivity through Biodiversity
14.10.2016 | Technische Universität München

nachricht Farming with forests
23.09.2016 | University of Illinois College of Agricultural, Consumer and Environmental Sciences (ACES)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

Advanced analysis of brain structure shape may track progression to Alzheimer's disease

26.10.2016 | Health and Medicine

3-D-printed structures shrink when heated

26.10.2016 | Materials Sciences

More VideoLinks >>>