Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New research to help the fight against foot and mouth

07.12.2006
Leeds scientists are starting the search for a new weapon in the fight against foot and mouth disease (FMD).

Researchers from the University’s Faculty of Biological Sciences aim to find out exactly how the virus infects animals and spreads – a first step in developing a treatment for the disease. An effective treatment would mean that millions of healthy livestock would not need to be slaughtered, as took place in 2001, to combat an FMD epidemic. Treatment of the disease could replace emergency vaccination in the event of an outbreak.

The Leeds research will focus on discovering the exact mechanism the FMD virus (FMDV) uses to penetrate the cell’s membrane. The virus can only replicate and spread once it is inside a cell in the animal host, so this mechanism is a key issue in fighting the disease.

FMDV is highly infectious and spreads very quickly, but many details of the replication of the virus are still poorly understood. Because FMD is classed as a dangerous pathogen, only one laboratory in the UK – the Institute for Animal Health at Pirbright, in Surrey – is licensed to work with the actual virus. The Leeds group have overcome this obstacle by searching out another – less dangerous – virus that can be used as a model for FMDV: equine rhinitis. This discovery could also help to expand the range of research carried out on FMDV – enabling much needed advances before the UK is faced with another outbreak.

Professor David Rowlands, who is heading the research, said: “Although FMDV belongs to a family of well-known and well-studied viruses – which includes polio and the common cold – the mechanism it uses to enter cells is completely different to these viruses. However, our work has shown that equine rhinitis virus appears to use a similar mechanism to FMDV, so we’re confident it will work as an effective model for the virus.

“Research into FMD has been limited by the necessary restrictions on working with the virus, but having a model will allow research to be carried out more widely. Scientific advances come more quickly when a number of groups are working on a problem and can share ideas and explore different avenues.”

The Leeds researchers will be working closely with the Institute for Animal Health, so that any findings from equine rhinitis virus can be tested by scientists at Pirbright directly with FMDV.

If the research is successful, the next step would be to develop a treatment which could prevent the virus from infecting cells and so stop the spread of the disease. Current plans in the event of a FMD outbreak focus on culling infected animals and emergency vaccination of surrounding livestock to prevent the spread of the disease, but the Leeds team believe treatment – if it could be developed – would provide a better alternative.

“There is still no vaccination which provides life-long immunity against all strains,” explained co-researcher Professor Richard Killington. “A number of problems still exist with vaccination: it takes five days to be effective, produces FMDV antibodies in the animals and the tests which distinguish between vaccinated and infected animals have still to be validated. Vaccination is currently the only scientific alternative to mass culling, but if a treatment could be found, it would be a better option. A treatment would be immediately effective, produce no antibodies and so work more effectively to isolate any outbreak. We’re a long way from that yet – but this research is the first step on the ladder.”

The research is funded through the Biotechnology and Biological Sciences Research Council (BBSRC). The Institute for Animal Health is a BBSRC-sponsored research institute.

| alfa
Further information:
http://www.leeds.ac.uk

More articles from Agricultural and Forestry Science:

nachricht Plasma-zapping process could yield trans fat-free soybean oil product
02.12.2016 | Purdue University

nachricht New findings about the deformed wing virus, a major factor in honey bee colony mortality
11.11.2016 | Veterinärmedizinische Universität Wien

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>