Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New research to help the fight against foot and mouth

07.12.2006
Leeds scientists are starting the search for a new weapon in the fight against foot and mouth disease (FMD).

Researchers from the University’s Faculty of Biological Sciences aim to find out exactly how the virus infects animals and spreads – a first step in developing a treatment for the disease. An effective treatment would mean that millions of healthy livestock would not need to be slaughtered, as took place in 2001, to combat an FMD epidemic. Treatment of the disease could replace emergency vaccination in the event of an outbreak.

The Leeds research will focus on discovering the exact mechanism the FMD virus (FMDV) uses to penetrate the cell’s membrane. The virus can only replicate and spread once it is inside a cell in the animal host, so this mechanism is a key issue in fighting the disease.

FMDV is highly infectious and spreads very quickly, but many details of the replication of the virus are still poorly understood. Because FMD is classed as a dangerous pathogen, only one laboratory in the UK – the Institute for Animal Health at Pirbright, in Surrey – is licensed to work with the actual virus. The Leeds group have overcome this obstacle by searching out another – less dangerous – virus that can be used as a model for FMDV: equine rhinitis. This discovery could also help to expand the range of research carried out on FMDV – enabling much needed advances before the UK is faced with another outbreak.

Professor David Rowlands, who is heading the research, said: “Although FMDV belongs to a family of well-known and well-studied viruses – which includes polio and the common cold – the mechanism it uses to enter cells is completely different to these viruses. However, our work has shown that equine rhinitis virus appears to use a similar mechanism to FMDV, so we’re confident it will work as an effective model for the virus.

“Research into FMD has been limited by the necessary restrictions on working with the virus, but having a model will allow research to be carried out more widely. Scientific advances come more quickly when a number of groups are working on a problem and can share ideas and explore different avenues.”

The Leeds researchers will be working closely with the Institute for Animal Health, so that any findings from equine rhinitis virus can be tested by scientists at Pirbright directly with FMDV.

If the research is successful, the next step would be to develop a treatment which could prevent the virus from infecting cells and so stop the spread of the disease. Current plans in the event of a FMD outbreak focus on culling infected animals and emergency vaccination of surrounding livestock to prevent the spread of the disease, but the Leeds team believe treatment – if it could be developed – would provide a better alternative.

“There is still no vaccination which provides life-long immunity against all strains,” explained co-researcher Professor Richard Killington. “A number of problems still exist with vaccination: it takes five days to be effective, produces FMDV antibodies in the animals and the tests which distinguish between vaccinated and infected animals have still to be validated. Vaccination is currently the only scientific alternative to mass culling, but if a treatment could be found, it would be a better option. A treatment would be immediately effective, produce no antibodies and so work more effectively to isolate any outbreak. We’re a long way from that yet – but this research is the first step on the ladder.”

The research is funded through the Biotechnology and Biological Sciences Research Council (BBSRC). The Institute for Animal Health is a BBSRC-sponsored research institute.

| alfa
Further information:
http://www.leeds.ac.uk

More articles from Agricultural and Forestry Science:

nachricht New gene for atrazine resistance identified in waterhemp
24.02.2017 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

nachricht Researchers discover a new link to fight billion-dollar threat to soybean production
14.02.2017 | University of Missouri-Columbia

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>