Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Improving public health surveillance for food-borne infections: a new European project

26.09.2006
This week, Prague, a new project was launched to improve surveillance of food-borne infections throughout Europe. Scientists from public health, food, and veterinary institutes agreed a plan that will allow, for the first time, the magnitude of health problems from food-borne disease to be measured across Europe.

Currently, collection of data on human infections such as Campylobacter and Salmonella, is not sensitive enough to give an accurate picture of the magnitude of the problem. Most countries do not have systems that determine the exact number of human infections, but use passive surveillance that relies on physicians and microbiology laboratories reporting infections.

Worse, this data cannot be compared between European countries as each uses different methods, and physicians have different practices for the management of patients with suspected food-borne infections. “This makes it difficult to calculate the overall burden and cost of diseases and it’s virtually impossible to compare the situation between the different European countries.” says Dr Kåre Mølbak, project leader.

The project, part of the Med-Vet-Net network, will use a cost-effective technique that has previously been used to study infections in animals to detect human infections. By testing for bacterial infections in human sera, such as blood already stored in medical facilities, scientists aim to fill the missing gaps in health surveillance data.

Researchers on the project have chosen two of the most common food-borne infections in Europe, Campylobacter and Salmonella, which are responsible for hundreds of thousands of cases of gastrointestinal illness in Europe every year (European Food Safety Authority). More accurate surveillance of these infections would allow better control methods to be implemented.

“This project brings together experts in serology, epidemiology, mathematical modelling and community-based studies allowing us to integrate information from different approaches of studying human infection” says Dr Mølbak. “By making full use of existing European studies and new data we will be able to calculate the ratios between infected cases, cases with symptoms in the community and lab reports.”

Once they have agreed testing methods for sera, researchers will plan and agree protocols for community-based studies of these bacteria. The group plan to conduct a pilot study based on sera stored in a number of different countries. Information on the level of antibodies to food-borne pathogens will be translated to measures of disease frequency, which again will be compared with the officially reported figures. This will pave the way for the creation of novel, more accurate Europe-wide surveillance systems for gastrointestinal illnesses.

Jennie Drew | alfa
Further information:
http://www.medvetnet.org
http://www.medvetnet.org/cms/templates/doc.php?id=26

More articles from Agricultural and Forestry Science:

nachricht New 3-D model predicts best planting practices for farmers
26.06.2017 | Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign

nachricht Fighting a destructive crop disease with mathematics
21.06.2017 | University of Cambridge

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>