Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Obesity Crisis in Insects? Not a Problem, Says Expert

25.09.2006
Ever seen a fat insect? Probably not. Dr. Spencer Behmer may have the answer why, and that could have implications for what is billed as the current human obesity epidemic.

Behmer, an entomologist with the Texas Agricultural Experiment Station, and several other researchers conducted a series of experiments to find out whether caterpillars could adapt to extreme changes in their nutritional environment.

By manipulating the nutritional environment of diamondback moth caterpillars, the researchers found that the insects evolved different physiological mechanisms related to fat metabolism. Which mechanism was used depended on whether the caterpillars were given carbohydrate-rich or carbohydrate-poor food.

The team's work was published recently in the Proceedings of the National Academy of Science.

The researchers theorized caterpillars – and animals in general – can evolve metabolically to adjust to extreme nutritional environments.

All animals need carbohydrates for energy and protein to build muscle and tissue, Behmer said. Different animals, however, need different amounts of these two macronutrients and sometimes it can be literally feast or famine for one or both of them.

"It's difficult to find in any environment a nutritionally perfect food," he said.

The researchers studied the insects over eight generations. In one experiment they fed caterpillars artificial diets that were rich in protein and low in carbohydrates (an Atkins-like diet); at other times the caterpillars received diets low in protein and high in carbohydrates (a high-carbohydrate diet).

In a second experiment caterpillars were allowed to freely eat one of two plants, an Arabidopsis mutant low in starch or an Arabidopsis mutant (plant) high in starch.

When the caterpillars were reared in carbohydrate-rich environments for multiple generations, they developed the ability to eat excess carbohydrate without adding fat to their bodies, Behmer said. On the other hand, those reared in carbohydrate-poor environments showed an ability to store ingested carbohydrates as fat.

Also after multiple generations on the low-starch plants, female moths preferred to lay their eggs on these same plants. This, Behmer said, is one of the first instances of a moth showing egg-laying behavior that is tied to a plant's nutritional chemistry.

Moths from low-starch plants might avoid the high-starch plants because these plants might make their offspring obese, he explained. Female moths reared on the high-starch mutant for multiple generations showed no preference for either mutant.plant.

Inferences can be made to humans from this work, he said. Looking back over human history, even as recently as 100 years ago, the diets of western cultures have undergone some radical changes.

Like insects, humans require carbohydrates and proteins. But, Behmer said, humans are not well adapted to diets containing extremely high levels of carbohydrates.

"Historically we haven't always had a lot of access to carbohydrates," he said, "and one of the biggest sources of carbohydrate in our current food is refined sugar. Our bodies tend to convert most of this excess carbohydrate to fat."

However, Behmer said other factors, such as a lack of exercise, might also be to blame.

Part of the research was done while members of the team were at the University of Oxford in England. Team members are Behmer, James Warbrick-Smith (currently pursuing a medical degree at Oxford University), Professor Stephen J. Simpson and Kwang-Pum Lee, now at the University of Sydney, Australia; and Professor David Raubeheimer, now at the University of Auckland, New Zealand.

Dr. Spencer Behmer | EurekAlert!
Further information:
http://www.tamu.edu

More articles from Agricultural and Forestry Science:

nachricht Climate change, population growth may lead to open ocean aquaculture
05.10.2017 | Oregon State University

nachricht New machine evaluates soybean at harvest for quality
04.10.2017 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

Metallic nanoparticles will help to determine the percentage of volatile compounds

20.10.2017 | Materials Sciences

Shallow soils promote savannas in South America

20.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>