Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Obesity Crisis in Insects? Not a Problem, Says Expert

25.09.2006
Ever seen a fat insect? Probably not. Dr. Spencer Behmer may have the answer why, and that could have implications for what is billed as the current human obesity epidemic.

Behmer, an entomologist with the Texas Agricultural Experiment Station, and several other researchers conducted a series of experiments to find out whether caterpillars could adapt to extreme changes in their nutritional environment.

By manipulating the nutritional environment of diamondback moth caterpillars, the researchers found that the insects evolved different physiological mechanisms related to fat metabolism. Which mechanism was used depended on whether the caterpillars were given carbohydrate-rich or carbohydrate-poor food.

The team's work was published recently in the Proceedings of the National Academy of Science.

The researchers theorized caterpillars – and animals in general – can evolve metabolically to adjust to extreme nutritional environments.

All animals need carbohydrates for energy and protein to build muscle and tissue, Behmer said. Different animals, however, need different amounts of these two macronutrients and sometimes it can be literally feast or famine for one or both of them.

"It's difficult to find in any environment a nutritionally perfect food," he said.

The researchers studied the insects over eight generations. In one experiment they fed caterpillars artificial diets that were rich in protein and low in carbohydrates (an Atkins-like diet); at other times the caterpillars received diets low in protein and high in carbohydrates (a high-carbohydrate diet).

In a second experiment caterpillars were allowed to freely eat one of two plants, an Arabidopsis mutant low in starch or an Arabidopsis mutant (plant) high in starch.

When the caterpillars were reared in carbohydrate-rich environments for multiple generations, they developed the ability to eat excess carbohydrate without adding fat to their bodies, Behmer said. On the other hand, those reared in carbohydrate-poor environments showed an ability to store ingested carbohydrates as fat.

Also after multiple generations on the low-starch plants, female moths preferred to lay their eggs on these same plants. This, Behmer said, is one of the first instances of a moth showing egg-laying behavior that is tied to a plant's nutritional chemistry.

Moths from low-starch plants might avoid the high-starch plants because these plants might make their offspring obese, he explained. Female moths reared on the high-starch mutant for multiple generations showed no preference for either mutant.plant.

Inferences can be made to humans from this work, he said. Looking back over human history, even as recently as 100 years ago, the diets of western cultures have undergone some radical changes.

Like insects, humans require carbohydrates and proteins. But, Behmer said, humans are not well adapted to diets containing extremely high levels of carbohydrates.

"Historically we haven't always had a lot of access to carbohydrates," he said, "and one of the biggest sources of carbohydrate in our current food is refined sugar. Our bodies tend to convert most of this excess carbohydrate to fat."

However, Behmer said other factors, such as a lack of exercise, might also be to blame.

Part of the research was done while members of the team were at the University of Oxford in England. Team members are Behmer, James Warbrick-Smith (currently pursuing a medical degree at Oxford University), Professor Stephen J. Simpson and Kwang-Pum Lee, now at the University of Sydney, Australia; and Professor David Raubeheimer, now at the University of Auckland, New Zealand.

Dr. Spencer Behmer | EurekAlert!
Further information:
http://www.tamu.edu

More articles from Agricultural and Forestry Science:

nachricht How much drought can a forest take?
20.01.2017 | University of California - Davis

nachricht Plasma-zapping process could yield trans fat-free soybean oil product
02.12.2016 | Purdue University

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>