Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Intelligent soil sampling saves time and money

A new computer program which can sample soil quickly and effectively could revolutionise land management by making the sampling process more cost effective and ensuring more sustainable use of our soils.

Soil is a complex and irreplaceable natural resource which varies hugely locally and nationally. While farmers sample their soil to learn about its nutrient levels to help manage their land, soil quality must also be monitored at national or regional scale. With growing populations and stricter legislation, such environmental surveys are becoming increasingly important to ensure sustainable land management, but current sampling methods can be time consuming, costly and produce insufficient results.

However, the new ‘intelligent computer program’ looks set to change this by enabling soil sampling to be tailored to local conditions, allowing land managers to obtain high quality information without over or under sampling.

The program has been designed by researchers at Rothamsted Research, with funding from a Biotechnology and Biological Sciences Research Council (BBSRC) Industrial Partnership Award with the Home-Grown Cereals Authority.

Dr Murray Lark, head of the Environmetics group which developed the software, explained: “Our program learns about the variation of the soil as it samples, and is therefore able to generate a sampling scheme that is tailored to local conditions and ensures that the sampling effort is used to greatest effect. Our program rapidly identifies where variation in the soil is complex and many samples are needed or where less sampling is needed because there are large patches of contrasting soil, so samples can be further apart.”

The underlying concept behind the program is the variogram – a mathematical model of how soil varies across an area. As sampling begins, the computer program is ignorant of the variogram and uses data from the sampling to reduce the level of uncertainty and to direct where subsequent samples should be taken. As data accumulate, this uncertainty is reduced.

Once the program has a sufficiently robust model of the spatial variation within the area, a final phase of sampling points is identified to ensure that the resulting map of the soil will be sufficiently precise.

Both computer simulations and practical trials have shown that this adaptive sampling scheme can converge from no initial knowledge to a reliable map of how soil varies. When tested on real landscapes, the scheme has reduced the number of sampling sites needed without any loss of accuracy.

Professor Julia Goodfellow, BBSRC Chief Executive, said: “This new program is a real breakthrough in modern land management and highlights the important role of a multidisciplinary systems approach to bioscience. By combining theory, computer modelling and experiments, scientists are producing useful and easier to apply outputs, such as this soil sampling program, which will ultimately benefit the wider public.”

Matt Goode | alfa
Further information:

More articles from Agricultural and Forestry Science:

nachricht Forest Management Yields Higher Productivity through Biodiversity
14.10.2016 | Technische Universität München

nachricht Farming with forests
23.09.2016 | University of Illinois College of Agricultural, Consumer and Environmental Sciences (ACES)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>