Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Important gene controlling tree growth

Scientists at the Umeå Plant Science Centre (UPSC) and the Swedish University of Agricultural Sciences (SLU) report today about a breakthrough in our understanding of how the growth and development of forest trees is controlled. In an article published in the international journal Science, May 4, they show that the FT gene that was previously shown to control the flowering time of annual plants, also controls tree flowering.

With the help of this gene poplar trees can be stimulated to flower after a few weeks instead of after the normal 10-15 years.

The scientists also show that the same gene not only controls the flowering time of trees, but also the timing of when the trees stop growing and set bud in the fall. That the same gene was involved in all these processes was highly unexpected.

The breakthrough for our understanding of the regulation of tree growth and development might revolutionize forest tree breeding and can lead to the development of new tree seedlings with a dramatically improved growth and also "tailor made" quality parameters suited for improved pulp and paper production, better construction materials and enhanced bioenergy production.

Trees are extremely important for life on earth. They are often a dominating part of the ecosystems and 30 per cent of the earths landmass is covered with forests. Trees produce many important products for mankind such as renewable fuel, cellulose for the pulp and paper industry and construction materials.

Compared to most other plants, trees display some key features. They are the latest flowering plants known ­ many trees do not form their first flower until they are 10-20 years old, sometimes even older!

Trees also have the ability to cycle between growth and dormancy. This is a way to adopt to harsh winter conditions when the supply of water is low and the tree might be damaged from both drought and cold. The trees have adopted to these conditions by stopping growth and forming buds at the end of summer or early fall. Decidious trees also shed their leaves. The tree is now dormant and is as such much more resistant to drought and frost than if it had been actively growing.

It has been known for a long time that the trees sense that fall is coming by measuring the length of the day. When the days get shorter the trees "know" that it is time to stop growing and set buds, even if it is a very warm fall. The trees are known to display a "critical daylength". If the days get shorter than this critical daylength the tree responds with growth cessation and bud set. The further north the trees grow the more important it is to stop growing and form buds sufficiently early in late summer.

This means that trees originating from different latitudes display different critical daylengths. For instance, an aspen tree from the middle of Germany stops growing and sets buds when the days get shorter than 16 hours. A tree from northern Sweden stops growing and prepares for winter already when the days get shorter than 21 hours long. Trees from northern Norway can even display critical daylengths of 23 hours! This trait is genetically inherited and is kept if the tree is moved to a new climate.

How the trees control their flowering, and why trees set bud at a certain time in the fall have been important questions for the scientists to answer. This is for two reasons. These are important traits that "makes a tree into a tree". There is a considerable applied interest in these traits. If one can induce early tree flowering it should be possible to dramatically enhance the speed of forest tree breeding.

Plant breeding has been extremely successful for the development of superior plant material for agriculture. It has, however, had a small impact on forestry. To a large extent this has been caused by the fact that a forest tree breeder has to wait for 10-20 years between each cross in his breeding program.

The poplar tree FT gene, controlling both the flowering time of trees and the time for growth cessation and bud set in the fall, has been identified by a research group led by professor Ove Nilsson at the Umeå Plant Science Centre (UPSC) and the Swedish University of Agricultural Sciences.

The gene is very similar to the Arabidopsis FT gene, the gene that is producing the messenger molecule that controls the flowering of annual plants and that is considered to be the so called "Florigen".

Results concerning the Arabidopsis gene were published last year by the Nilsson group, also in Science. This finding was ranked by Science to belong to the third most important scientific discovery in 2005.

The scientists now show that the poplar FT gene is turned on before the tree starts flowering for the first time after 10-15 years. If the gene is activated prematurely in a transgenic tree, the tree can be stimulated to flower already in just a few weeks. After a few months completely normal flowers are formed.

It is also shown that the poplar FT gene is turned off in late summer just before the trees stop growing and set bud. By changing the activity of the FT gene the scientists could either prolong or shorten the growing season of the tree. They could also determine the mechanisms involved in growth cessation and bud set in the fall. This knowledge is vital if we want to adopt plants and trees to new climates.

The scientists that have been active in this study are: Henrik Böhlenius, Tao Huang, Laurence Charbonnel Campaa och Ove Nilsson from the Swedish University of Agricultural Sciences (SLU) in Umeå Sweden. Stefan Jansson from Umeå university, Sweden, Amy M. Brunner from the Virginia Polytechnic Institute and State University, USA, and Steven H. Strauss from Oregon State University, USA. The research has mainly been funded by the Swedish Foundation for Strategic Research (SSF).

Sven-Olof Bylund | alfa
Further information:

More articles from Agricultural and Forestry Science:

nachricht Unique communication strategy discovered in stem cell pathway controlling plant growth
23.03.2018 | Cold Spring Harbor Laboratory

nachricht “How trees coexist” – new findings from biodiversity research published in Nature Communications
22.03.2018 | Technische Universität Dresden

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>