Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

An inserted retroposon affects spermatogenesis in boars

03.05.2006
MTT Agrifood Research Finland researchers have identified the birth mechanism of an infertility problem afflicting Finnish Yorkshire pigs. A retroposon, or “jumping gene”, was found to be behind the hereditary defect giving rise to the immotile short-tail sperm defect (ISTS) in boars, by producing a mutation in the KPL2-gene in pigs.

The ISTS defect, causing sterility, was detected in Finnish Yorkshire boars for the first time in 1987. Spermatozoa of boars suffering from the defect are immotile, and the majority have tails only one third the normal length.

Last year MTT researchers traced the defect to its exact position in the KPL2-gene, which affects sperm development. With the aid of a DNA test developed at MTT the ISTS defect can be eliminated from the pig population with one hundred percent certainty.

The results were published in March in the high-ranking journal Proceedings of National Academy of Sciences USA.

Research can also provide information about humans

The pig genome is very close to the human genome, and humans also possess the KPL2-gene. MTT Principal Research Scientist Johanna Vilkki believes that changes in the same gene also affect human spermatogenesis and may cause sperm immobility.

–Further research on the KPL2-gene function can perhaps provide completely new information on factors causing infertility in humans as well. At present very few gene defects affecting spermatogenesis have been identified in humans, and the mutations that have been recognised are associated with different types of genes, Vilkki points out.

Retroposon’s function unknown

The defect causing the ”short-tail” sperm in pigs results from a retroposon, or moving segment of DNA, having positioned itself into the KPL2-gene. MTT researcher Anu Sironen explains that retroposons are found everywhere in the genomes of most organisms.

Retroposons have been well researched, but their function is not yet precisely clear. By moving from one place to another within a genome they are able to change genes and their expression, she says.

KPL2 is a large gene, Sironen notes, whose role is little understood. In addition to sperm, the gene appears expressed, for example, in other ciliated cells in the lung and trachea, and in the liver.

Future research at MTT is intended to ascertain, among other things, whether the retroposon also affects pigs in other ways. Research work is planned together with Turku University and international collaborators.

Gene defect spread by the Jampo boar

As the families of affected boars can be traced back to one boar in the early 1980’s, it is presumed that the gene mutation causing the sperm defect took place in this boar Jampo, or its ancestors. The defect has recessive inheritance, i.e. it manifests itself only if the pig has inherited defective genes from both parents. Jampo was a popular boar used for artificial insemination, and the gene defect it transmitted became widespread in the Finnish Yorkshire pig population during the 1990’s. The gene defect has not been observed in Yorkshire pigs elsewhere in the world, nor has it been found in other pig breeds.

Yorkshire boars intended for artificial insemination have been tested for the ISTS defect since 2001 using MTT’s previously developed method based on DNA-markers. Altogether 1,050 tests had been carried out by the end of last year. 30 percent of boars tested in 2001 showed themselves to be carriers of the defective gene; last year the frequency was only 17 percent.

Johanna Vilkki | alfa
Further information:
http://www.mtt.fi/english/press/pressrelease.html

More articles from Agricultural and Forestry Science:

nachricht Climate change, population growth may lead to open ocean aquaculture
05.10.2017 | Oregon State University

nachricht New machine evaluates soybean at harvest for quality
04.10.2017 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>