Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New crop of technology reveals plant health

06.04.2006
Green fingered amateur gardeners often talk to their plants; now the plants can talk back. Scientists have developed a system that picks up the subtle cues of plant communication helping plant growers to monitor the crop’s state of health and will result in optimal environmentally-friendly growing conditions.

The scientists, working together in a project called PLANTS, sought to develop a unique system that linked plants, technology and people to continuously assess the state of crop health. Using sensors, transmitters and specialist software, the system monitors the state of the crop on a plant-by-plant basis, in near real-time.

PLANTS adhered to a broader vision where the virtual (computing) space was seamlessly integrated with the physical environment. One of its main objectives was to develop the necessary software modules, tools and methodologies that enable the efficient and flexible integration of ‘augmented’ plants and artefacts into ubiquitous computing applications which may range from domestic plant care to precision agriculture.

"The main idea behind PLANTS is to develop a system that produces the optimal growing conditions for a crop, so that crops are kept in the best possible health with the minimum of inputs,” says Dr Fiona Tooke of the Eden Project, one of the project partners. “It promotes sustainability, because there isn’t excessive use of inputs like fertilizer and water. It makes crop management more economic too, as well as less damaging to the environment."

"The system picks up on the plants’ signals that indicate when plants need help, such as more water, more nutrients or more or less light. Essentially, the plants are controlling the system," she continues.

The system uses an infrared camera to scan the entire crop canopy. It can automatically detect when individual or groups of plants are getting too hot. Another sensor detects chlorophyll fluorescence, which tells the system the rate at which the plant is absorbing energy. That reflects the current state of photosynthesis, itself a reflection of the plant’s health.

These sensors communicate their data through specially developed wireless transmitters. Scientists at lead project partner the Tyndall National Institute managed to reduce the essential technology from 100mm Field Programmable Gate Arrays (FPGA), to a specialised 25mm module.

This system incorporates a wireless transceiver capability with embedded protocol software to minimise power consumption and maximise data throughput. What’s more, these chips work wirelessly and contain their own batteries. They can communicate over large distances for their size, with a current range of about 10m, but again the Tyndall team hope to push their range further. "Finally, they are also looking at the potential of ’Power Harvesting’ for the chip, where it would supply its own energy needs through solar energy or ground vibrations, making the chip completely independent,’ says Tooke.

She believes these could have many applications outside of the PLANTS project. "We were speculating, for example, that they might have an application in hostile environments, like growing plants in space or soil-less systems. Potentially, these are situations where our system could prove very useful."

The sensors and transmitters are two key elements of the system, but its heart is the management software, designed by Computer Technology Institute, Greece, that gathers, and then acts, on the data operating as a plant/environmental context management system. Called ePlantOS, it can control the deployment of water, nutrients or pesticides, as necessary.

One of PLANTS’ demonstrator went live at the Eden Project end March 2006 and was the centre point of a special workshop to introduce the technology to experts in the fields of plant science, crop management, microelectronics and software engineering. A temporary exhibit will now show PLANTS results from mid-April to end June 2006 at the Eden Project.

Three partners lodged a patent for the technology developed during the PLANTS project. "They certainly hope to carry the work further, by initially developing a prototype, and then possibly commercialising the system,” says Tooke. “That work will go beyond the life of this project, however. PLANTS ended in March 2006."

However, none of those system improvements will make the plants totally stress free, but if the project’s crop management system takes off, at least their complaints will be heard and listened to.

Tara Morris | alfa
Further information:
http://istresults.cordis.europa.eu.int/index.cfm/section/news/tpl/article/BrowsingType/Features/ID/81342

More articles from Agricultural and Forestry Science:

nachricht Six-legged livestock -- sustainable food production
11.05.2017 | Faculty of Science - University of Copenhagen

nachricht Elephant Herpes: Super-Shedders Endanger Young Animals
04.05.2017 | Universität Zürich

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>