Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New crop of technology reveals plant health

06.04.2006
Green fingered amateur gardeners often talk to their plants; now the plants can talk back. Scientists have developed a system that picks up the subtle cues of plant communication helping plant growers to monitor the crop’s state of health and will result in optimal environmentally-friendly growing conditions.

The scientists, working together in a project called PLANTS, sought to develop a unique system that linked plants, technology and people to continuously assess the state of crop health. Using sensors, transmitters and specialist software, the system monitors the state of the crop on a plant-by-plant basis, in near real-time.

PLANTS adhered to a broader vision where the virtual (computing) space was seamlessly integrated with the physical environment. One of its main objectives was to develop the necessary software modules, tools and methodologies that enable the efficient and flexible integration of ‘augmented’ plants and artefacts into ubiquitous computing applications which may range from domestic plant care to precision agriculture.

"The main idea behind PLANTS is to develop a system that produces the optimal growing conditions for a crop, so that crops are kept in the best possible health with the minimum of inputs,” says Dr Fiona Tooke of the Eden Project, one of the project partners. “It promotes sustainability, because there isn’t excessive use of inputs like fertilizer and water. It makes crop management more economic too, as well as less damaging to the environment."

"The system picks up on the plants’ signals that indicate when plants need help, such as more water, more nutrients or more or less light. Essentially, the plants are controlling the system," she continues.

The system uses an infrared camera to scan the entire crop canopy. It can automatically detect when individual or groups of plants are getting too hot. Another sensor detects chlorophyll fluorescence, which tells the system the rate at which the plant is absorbing energy. That reflects the current state of photosynthesis, itself a reflection of the plant’s health.

These sensors communicate their data through specially developed wireless transmitters. Scientists at lead project partner the Tyndall National Institute managed to reduce the essential technology from 100mm Field Programmable Gate Arrays (FPGA), to a specialised 25mm module.

This system incorporates a wireless transceiver capability with embedded protocol software to minimise power consumption and maximise data throughput. What’s more, these chips work wirelessly and contain their own batteries. They can communicate over large distances for their size, with a current range of about 10m, but again the Tyndall team hope to push their range further. "Finally, they are also looking at the potential of ’Power Harvesting’ for the chip, where it would supply its own energy needs through solar energy or ground vibrations, making the chip completely independent,’ says Tooke.

She believes these could have many applications outside of the PLANTS project. "We were speculating, for example, that they might have an application in hostile environments, like growing plants in space or soil-less systems. Potentially, these are situations where our system could prove very useful."

The sensors and transmitters are two key elements of the system, but its heart is the management software, designed by Computer Technology Institute, Greece, that gathers, and then acts, on the data operating as a plant/environmental context management system. Called ePlantOS, it can control the deployment of water, nutrients or pesticides, as necessary.

One of PLANTS’ demonstrator went live at the Eden Project end March 2006 and was the centre point of a special workshop to introduce the technology to experts in the fields of plant science, crop management, microelectronics and software engineering. A temporary exhibit will now show PLANTS results from mid-April to end June 2006 at the Eden Project.

Three partners lodged a patent for the technology developed during the PLANTS project. "They certainly hope to carry the work further, by initially developing a prototype, and then possibly commercialising the system,” says Tooke. “That work will go beyond the life of this project, however. PLANTS ended in March 2006."

However, none of those system improvements will make the plants totally stress free, but if the project’s crop management system takes off, at least their complaints will be heard and listened to.

Tara Morris | alfa
Further information:
http://istresults.cordis.europa.eu.int/index.cfm/section/news/tpl/article/BrowsingType/Features/ID/81342

More articles from Agricultural and Forestry Science:

nachricht Crop achilles' heel costs farmers 10 percent of potential yield
24.01.2017 | Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign

nachricht How much drought can a forest take?
20.01.2017 | University of California - Davis

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Breaking the optical bandwidth record of stable pulsed lasers

24.01.2017 | Physics and Astronomy

Choreographing the microRNA-target dance

24.01.2017 | Life Sciences

Spanish scientists create a 3-D bioprinter to print human skin

24.01.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>