Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New crop of technology reveals plant health

06.04.2006
Green fingered amateur gardeners often talk to their plants; now the plants can talk back. Scientists have developed a system that picks up the subtle cues of plant communication helping plant growers to monitor the crop’s state of health and will result in optimal environmentally-friendly growing conditions.

The scientists, working together in a project called PLANTS, sought to develop a unique system that linked plants, technology and people to continuously assess the state of crop health. Using sensors, transmitters and specialist software, the system monitors the state of the crop on a plant-by-plant basis, in near real-time.

PLANTS adhered to a broader vision where the virtual (computing) space was seamlessly integrated with the physical environment. One of its main objectives was to develop the necessary software modules, tools and methodologies that enable the efficient and flexible integration of ‘augmented’ plants and artefacts into ubiquitous computing applications which may range from domestic plant care to precision agriculture.

"The main idea behind PLANTS is to develop a system that produces the optimal growing conditions for a crop, so that crops are kept in the best possible health with the minimum of inputs,” says Dr Fiona Tooke of the Eden Project, one of the project partners. “It promotes sustainability, because there isn’t excessive use of inputs like fertilizer and water. It makes crop management more economic too, as well as less damaging to the environment."

"The system picks up on the plants’ signals that indicate when plants need help, such as more water, more nutrients or more or less light. Essentially, the plants are controlling the system," she continues.

The system uses an infrared camera to scan the entire crop canopy. It can automatically detect when individual or groups of plants are getting too hot. Another sensor detects chlorophyll fluorescence, which tells the system the rate at which the plant is absorbing energy. That reflects the current state of photosynthesis, itself a reflection of the plant’s health.

These sensors communicate their data through specially developed wireless transmitters. Scientists at lead project partner the Tyndall National Institute managed to reduce the essential technology from 100mm Field Programmable Gate Arrays (FPGA), to a specialised 25mm module.

This system incorporates a wireless transceiver capability with embedded protocol software to minimise power consumption and maximise data throughput. What’s more, these chips work wirelessly and contain their own batteries. They can communicate over large distances for their size, with a current range of about 10m, but again the Tyndall team hope to push their range further. "Finally, they are also looking at the potential of ’Power Harvesting’ for the chip, where it would supply its own energy needs through solar energy or ground vibrations, making the chip completely independent,’ says Tooke.

She believes these could have many applications outside of the PLANTS project. "We were speculating, for example, that they might have an application in hostile environments, like growing plants in space or soil-less systems. Potentially, these are situations where our system could prove very useful."

The sensors and transmitters are two key elements of the system, but its heart is the management software, designed by Computer Technology Institute, Greece, that gathers, and then acts, on the data operating as a plant/environmental context management system. Called ePlantOS, it can control the deployment of water, nutrients or pesticides, as necessary.

One of PLANTS’ demonstrator went live at the Eden Project end March 2006 and was the centre point of a special workshop to introduce the technology to experts in the fields of plant science, crop management, microelectronics and software engineering. A temporary exhibit will now show PLANTS results from mid-April to end June 2006 at the Eden Project.

Three partners lodged a patent for the technology developed during the PLANTS project. "They certainly hope to carry the work further, by initially developing a prototype, and then possibly commercialising the system,” says Tooke. “That work will go beyond the life of this project, however. PLANTS ended in March 2006."

However, none of those system improvements will make the plants totally stress free, but if the project’s crop management system takes off, at least their complaints will be heard and listened to.

Tara Morris | alfa
Further information:
http://istresults.cordis.europa.eu.int/index.cfm/section/news/tpl/article/BrowsingType/Features/ID/81342

More articles from Agricultural and Forestry Science:

nachricht Researchers discover a new link to fight billion-dollar threat to soybean production
14.02.2017 | University of Missouri-Columbia

nachricht Important to maintain a diversity of habitats in the sea
14.02.2017 | University of Gothenburg

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>