Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plant diseases mutate to evade detection

15.03.2006
Scientists at the University of the West of England have discovered how bacteria involved in crop disease can evolve to avoid the natural defences of the plant. This discovery is crucial to the understanding of how disease can spread fast even when plants can naturally defend themselves.

The research team found that the bacterial colony changes to one lacking the gene that normally triggers a defence mechanism from the plant. In effect the bacteria disguise themselves to ensure they can get through a plant’s detection system. This means the invading bacteria can then infect the plant undetected and spread throughout a crop to cause disease.

The results of the study led by Andrew Pitman and Dawn Arnold, of UWE’s Centre for Research in Plant Science, were published in a recent issue of Current Biology. The disease agent, Pseudomonas syringae, or halo blight as it is commonly known, infects bean crops with small spots surrounded by a yellow halo. The bacteria cause greasy brown lesions on pods making them unmarketable.

Dawn Arnold described how the cycle of attack and defence works: “As the plants fight back, the tissue around the infection dies, preventing further spread of the blight. But this strategy often seems to fail, and the bacteria continue to infect other plants, becoming more virulent.

“In this study, we simulated an outbreak in the laboratory, exposing healthy leaves to the disease, then re-harvesting the bacteria for another cycle in healthy plants. After repeating this five times, we found that plants could no longer defend themselves against the bacteria and experienced massive tissue damage.”

By analysing the bacterium’s genome, the team discovered that the halo blight pathogen was able to remove the gene responsible for making the protein recognised by the plant. The gene migrates to the cytoplasm of the bacteria and is lost as the bacteria replicate and this loss does not arrest the growth of the bacteria itself.

According to the researchers, this is the first example of this mechanism being demonstrated in plant pathogenic bacteria – however, a similar mechanism is used by bacteria that infect animals. The plant bacteria seem able to continue to function even without their banished genes and the researchers have yet to discover why they do not get rid of them permanently.

Lesley Drake | alfa
Further information:
http://www.uwe.ac.uk

More articles from Agricultural and Forestry Science:

nachricht Raiding the rape field
23.05.2018 | Julius-Maximilians-Universität Würzburg

nachricht New technique reveals details of forest fire recovery
17.05.2018 | DOE/Brookhaven National Laboratory

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Spinning rugby balls: The rotation of the most massive galaxies

23.05.2018 | Physics and Astronomy

Raiding the rape field

23.05.2018 | Agricultural and Forestry Science

Turning entanglement upside down

23.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>