Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plant diseases mutate to evade detection

15.03.2006
Scientists at the University of the West of England have discovered how bacteria involved in crop disease can evolve to avoid the natural defences of the plant. This discovery is crucial to the understanding of how disease can spread fast even when plants can naturally defend themselves.

The research team found that the bacterial colony changes to one lacking the gene that normally triggers a defence mechanism from the plant. In effect the bacteria disguise themselves to ensure they can get through a plant’s detection system. This means the invading bacteria can then infect the plant undetected and spread throughout a crop to cause disease.

The results of the study led by Andrew Pitman and Dawn Arnold, of UWE’s Centre for Research in Plant Science, were published in a recent issue of Current Biology. The disease agent, Pseudomonas syringae, or halo blight as it is commonly known, infects bean crops with small spots surrounded by a yellow halo. The bacteria cause greasy brown lesions on pods making them unmarketable.

Dawn Arnold described how the cycle of attack and defence works: “As the plants fight back, the tissue around the infection dies, preventing further spread of the blight. But this strategy often seems to fail, and the bacteria continue to infect other plants, becoming more virulent.

“In this study, we simulated an outbreak in the laboratory, exposing healthy leaves to the disease, then re-harvesting the bacteria for another cycle in healthy plants. After repeating this five times, we found that plants could no longer defend themselves against the bacteria and experienced massive tissue damage.”

By analysing the bacterium’s genome, the team discovered that the halo blight pathogen was able to remove the gene responsible for making the protein recognised by the plant. The gene migrates to the cytoplasm of the bacteria and is lost as the bacteria replicate and this loss does not arrest the growth of the bacteria itself.

According to the researchers, this is the first example of this mechanism being demonstrated in plant pathogenic bacteria – however, a similar mechanism is used by bacteria that infect animals. The plant bacteria seem able to continue to function even without their banished genes and the researchers have yet to discover why they do not get rid of them permanently.

Lesley Drake | alfa
Further information:
http://www.uwe.ac.uk

More articles from Agricultural and Forestry Science:

nachricht Microjet generator for highly viscous fluids
13.02.2018 | Tokyo University of Agriculture and Technology

nachricht Sweet route to greater yields
08.02.2018 | Rothamsted Research

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>