Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Millets and sorghums in Niger: genetic diversity is going strong

14.03.2006
Millet and sorghum are major food crops in the Sahel, where they have been diversified quite considerably.

However, the existing capital is likely to shrink as a result of human activity, in terms of socioeconomic development and environmental changes, particularly climate change. While there have been very few large-scale studies of the issue to date, CIRAD and its partners are beginning to reap the first results of a project funded by the Institut français de la biodiversité (IFB). The aim is to assess the changes in spatial and temporal distribution of millet and sorghum diversity in Niger between 1976 and 2003, ie over roughly a quarter of a century.

The areas cultivated and the human population in Niger have doubled in 25 years. There has also been a significant rural exodus. Moreover, the country has seen a marked change in its climate: the 400 mm isohyet has shifted 200 km south in western Niger and 100 km south in the East. The stage appears to be set for genetic erosion of plant species, but is this in fact the case for millet and sorghum?

To answer that question, researchers collected cultivated millet and sorghum varieties in 2003 from 79 villages throughout the zones in which these cereals are grown. Some 609 millet samples and 742 sorghum samples had been taken from the same villages in 1976. The agromorphological and genetic diversity of the samples collected in 1976 and 2003 was compared through field trials and using microsatellite molecular markers.

The results showed that agromorphological diversity had not changed much in Niger. However, there had been changes in the geographical distribution of the various varieties, perhaps due to changing climatic and agronomic constraints, or to the emergence of new uses. Moreover, the surveys and field trials showed that the millet varieties grown in 2003 in the zones of Niger most exposed to climatic risks were generally earlier than those grown in the same regions in 1976.

Analysis by microsatellite markers, for its part, revealed that the genetic diversity of both sorghum and millet varieties had held up well. Overall, no genetic erosion was observed and the allelic wealth of the two surveys was equivalent.

These results show the ability of millet and sorghum varieties to maintain their diversity in countries like Niger, which are often victims of recurrent, severe drought. This resilience, which is boosted by the traditional seed production system, confirms the merits of growing these crops. It would be worth conducting similar studies in other Sahelian countries such as Mali or Burkina Faso, where the changes in production systems, compounded by stronger competition from maize and cotton than in Niger, could produce different results.

Jacques Chantereau | alfa
Further information:
http://www.cirad.fr

More articles from Agricultural and Forestry Science:

nachricht Six-legged livestock -- sustainable food production
11.05.2017 | Faculty of Science - University of Copenhagen

nachricht Elephant Herpes: Super-Shedders Endanger Young Animals
04.05.2017 | Universität Zürich

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>