Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Disease damages wheat roots, thwarts water uptake

Alterations in irrigation schedules may be needed when wheat streak mosaic infection is suspected in winter wheat crops, according to a Texas Agricultural Experiment Station researcher in Amarillo.

Drought this winter has prompted more irrigation of wheat than normal; however, wheat streak mosaic is also being detected, said Jacob Price, a graduate student and diagnostic technician for the Experiment Station’s plant pathology department.

Wheat streak mosaic, the most common wheat disease in the Texas Panhandle, is a problem throughout many wheat production areas, Price said. The disease is spread by the wheat curl mite and currently no pesticides can control the mite, he said.

In the High Plains, wheat is frequently irrigated and grown for both grazing and grain production, he said. It is already known the disease has a negative impact on plant development and forage yield.

Now Price is trying to get to the "root" of the problem. He wants to determine what effect the stunted root systems of infected plants have on their uptake of irrigation water and whether different levels of irrigation make a difference on the plants’ growth and yields.

"We’re trying to determine if it is worth irrigating at all," he said.

"I hope this research will develop recommendations on irrigation for infected wheat plants."

Samples are already being submitted this year with the yellowing, stunted symptoms of wheat streak mosaic to Jacobs. After making a diagnosis, he sends the information to the Plant Diagnostic Information System, a wide-scale information system used by many agricultural centers.

"What I’ve seen in my experiments so far is it (the disease) damages root growth," he said. "Once infected, the roots don’t grow anymore. If they don’t develop, they can’t take up water efficiently and expensive irrigation water would be wasted."

Producers normally irrigate using the guidance of the Texas High Plains Evapotransporation network, Price said. The network collects weather data from various stations and uses it to estimate the daily water use of a crop.

By determining how much water the infected plants are actually taking up, he said he hopes to help producers save water and money and still maintain the best possible yields under the diseased scenario.

His study is only a year old, but Price intends to replicated it two more years both in the greenhouse and in the field. The greenhouse study looks primarily at root mass, while the field study tests plant production and yield, he said. He is using a neutron depth moisture gauge to monitor water uptake.

"When it starts warming up and the wheat starts growing, that’s when we’ll see more yellowing and we’ll get a lot more samples to test," he said.

"I’m concerned since we’ve had so much drought and it’s so expensive to irrigate this year," Price said. "Water-use efficiency is going to be key."

Jacob Price | EurekAlert!
Further information:

More articles from Agricultural and Forestry Science:

nachricht Forest Management Yields Higher Productivity through Biodiversity
14.10.2016 | Technische Universität München

nachricht Farming with forests
23.09.2016 | University of Illinois College of Agricultural, Consumer and Environmental Sciences (ACES)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>