Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Disease damages wheat roots, thwarts water uptake

02.03.2006
Alterations in irrigation schedules may be needed when wheat streak mosaic infection is suspected in winter wheat crops, according to a Texas Agricultural Experiment Station researcher in Amarillo.

Drought this winter has prompted more irrigation of wheat than normal; however, wheat streak mosaic is also being detected, said Jacob Price, a graduate student and diagnostic technician for the Experiment Station’s plant pathology department.

Wheat streak mosaic, the most common wheat disease in the Texas Panhandle, is a problem throughout many wheat production areas, Price said. The disease is spread by the wheat curl mite and currently no pesticides can control the mite, he said.

In the High Plains, wheat is frequently irrigated and grown for both grazing and grain production, he said. It is already known the disease has a negative impact on plant development and forage yield.

Now Price is trying to get to the "root" of the problem. He wants to determine what effect the stunted root systems of infected plants have on their uptake of irrigation water and whether different levels of irrigation make a difference on the plants’ growth and yields.

"We’re trying to determine if it is worth irrigating at all," he said.

"I hope this research will develop recommendations on irrigation for infected wheat plants."

Samples are already being submitted this year with the yellowing, stunted symptoms of wheat streak mosaic to Jacobs. After making a diagnosis, he sends the information to the Plant Diagnostic Information System, a wide-scale information system used by many agricultural centers.

"What I’ve seen in my experiments so far is it (the disease) damages root growth," he said. "Once infected, the roots don’t grow anymore. If they don’t develop, they can’t take up water efficiently and expensive irrigation water would be wasted."

Producers normally irrigate using the guidance of the Texas High Plains Evapotransporation network, Price said. The network collects weather data from various stations and uses it to estimate the daily water use of a crop.

By determining how much water the infected plants are actually taking up, he said he hopes to help producers save water and money and still maintain the best possible yields under the diseased scenario.

His study is only a year old, but Price intends to replicated it two more years both in the greenhouse and in the field. The greenhouse study looks primarily at root mass, while the field study tests plant production and yield, he said. He is using a neutron depth moisture gauge to monitor water uptake.

"When it starts warming up and the wheat starts growing, that’s when we’ll see more yellowing and we’ll get a lot more samples to test," he said.

"I’m concerned since we’ve had so much drought and it’s so expensive to irrigate this year," Price said. "Water-use efficiency is going to be key."

Jacob Price | EurekAlert!
Further information:
http://www.tamu.edu

More articles from Agricultural and Forestry Science:

nachricht Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli
26.04.2017 | University of the Basque Country

nachricht New data unearths pesticide peril in beehives
21.04.2017 | Cornell University

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>