Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Disease damages wheat roots, thwarts water uptake

02.03.2006
Alterations in irrigation schedules may be needed when wheat streak mosaic infection is suspected in winter wheat crops, according to a Texas Agricultural Experiment Station researcher in Amarillo.

Drought this winter has prompted more irrigation of wheat than normal; however, wheat streak mosaic is also being detected, said Jacob Price, a graduate student and diagnostic technician for the Experiment Station’s plant pathology department.

Wheat streak mosaic, the most common wheat disease in the Texas Panhandle, is a problem throughout many wheat production areas, Price said. The disease is spread by the wheat curl mite and currently no pesticides can control the mite, he said.

In the High Plains, wheat is frequently irrigated and grown for both grazing and grain production, he said. It is already known the disease has a negative impact on plant development and forage yield.

Now Price is trying to get to the "root" of the problem. He wants to determine what effect the stunted root systems of infected plants have on their uptake of irrigation water and whether different levels of irrigation make a difference on the plants’ growth and yields.

"We’re trying to determine if it is worth irrigating at all," he said.

"I hope this research will develop recommendations on irrigation for infected wheat plants."

Samples are already being submitted this year with the yellowing, stunted symptoms of wheat streak mosaic to Jacobs. After making a diagnosis, he sends the information to the Plant Diagnostic Information System, a wide-scale information system used by many agricultural centers.

"What I’ve seen in my experiments so far is it (the disease) damages root growth," he said. "Once infected, the roots don’t grow anymore. If they don’t develop, they can’t take up water efficiently and expensive irrigation water would be wasted."

Producers normally irrigate using the guidance of the Texas High Plains Evapotransporation network, Price said. The network collects weather data from various stations and uses it to estimate the daily water use of a crop.

By determining how much water the infected plants are actually taking up, he said he hopes to help producers save water and money and still maintain the best possible yields under the diseased scenario.

His study is only a year old, but Price intends to replicated it two more years both in the greenhouse and in the field. The greenhouse study looks primarily at root mass, while the field study tests plant production and yield, he said. He is using a neutron depth moisture gauge to monitor water uptake.

"When it starts warming up and the wheat starts growing, that’s when we’ll see more yellowing and we’ll get a lot more samples to test," he said.

"I’m concerned since we’ve had so much drought and it’s so expensive to irrigate this year," Price said. "Water-use efficiency is going to be key."

Jacob Price | EurekAlert!
Further information:
http://www.tamu.edu

More articles from Agricultural and Forestry Science:

nachricht Alkaline soil, sensible sensor
03.08.2017 | American Society of Agronomy

nachricht New 3-D model predicts best planting practices for farmers
26.06.2017 | Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>