Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Disturbing former farmlands can rouse old pesticides, says Dartmouth research

20.02.2006
A group of Dartmouth researchers has evidence that disturbing the land where farms once thrived can mobilize both arsenic and lead that were applied as pesticides in the early 1900s. Once disturbed, these metals can then contaminate nearby surface waters.

"We continue to learn more about how past agricultural practices are affecting our current environment," says Carl Renshaw, Associate Professor of Earth Sciences at Dartmouth. "Unlike some of the pesticides used today, metals like arsenic and lead in old pesticides do not degrade over time. So the question becomes, where do they end up? As we learn more about what happens to these metals since they were applied, we can make better decisions about how to use our land."

Renshaw and his colleagues studied two New Hampshire apple orchards where the pesticide lead arsenate was once used, and they compared the data to a nearby uncontaminated field. Their research was published in the January-February issue of the Journal of Environmental Quality.

The researchers confirmed earlier findings that, in the former orchards, most of the arsenic and lead remains in the top ten inches of soil. The new study goes further and shows that these toxic metals do not remain in their original mineral form. Instead, they are now part of the fine silt and organic matter in the soil, which is most susceptible to erosion.

"We learned that disturbing this land, for example tilling and replanting, mobilizes the arsenic and lead," says Renshaw. "The remobilized metals were found in sediments in a stream channel that drains the tilled orchard."

Renshaw explains that it’s unclear whether the metals in the sediment are taken up by plants and animals in the stream. The researchers tested the macroinvertebrate residents (midge flies and dragonflies) at the outlet of the contaminated stream, and found that, as of yet, there is no disparity in the levels of arsenic or lead.

"Historic farmlands in New Hampshire and elsewhere are increasingly being developed," says Renshaw. "While the arsenic and lead in the soils of old orchards is essentially immobile as long as the land is not disturbed, our work suggests that the development of these lands can inadvertently mobilize these metals toward bodies of water. Communities in these areas may want to ensure additional precautions are taken to control erosion when old orchard lands are disturbed in order to reduce the potential for contamination of nearby surface waters."

Sue Knapp | EurekAlert!
Further information:
http://www.Dartmouth.edu

More articles from Agricultural and Forestry Science:

nachricht Alkaline soil, sensible sensor
03.08.2017 | American Society of Agronomy

nachricht New 3-D model predicts best planting practices for farmers
26.06.2017 | Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>