Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Disturbing former farmlands can rouse old pesticides, says Dartmouth research

20.02.2006
A group of Dartmouth researchers has evidence that disturbing the land where farms once thrived can mobilize both arsenic and lead that were applied as pesticides in the early 1900s. Once disturbed, these metals can then contaminate nearby surface waters.

"We continue to learn more about how past agricultural practices are affecting our current environment," says Carl Renshaw, Associate Professor of Earth Sciences at Dartmouth. "Unlike some of the pesticides used today, metals like arsenic and lead in old pesticides do not degrade over time. So the question becomes, where do they end up? As we learn more about what happens to these metals since they were applied, we can make better decisions about how to use our land."

Renshaw and his colleagues studied two New Hampshire apple orchards where the pesticide lead arsenate was once used, and they compared the data to a nearby uncontaminated field. Their research was published in the January-February issue of the Journal of Environmental Quality.

The researchers confirmed earlier findings that, in the former orchards, most of the arsenic and lead remains in the top ten inches of soil. The new study goes further and shows that these toxic metals do not remain in their original mineral form. Instead, they are now part of the fine silt and organic matter in the soil, which is most susceptible to erosion.

"We learned that disturbing this land, for example tilling and replanting, mobilizes the arsenic and lead," says Renshaw. "The remobilized metals were found in sediments in a stream channel that drains the tilled orchard."

Renshaw explains that it’s unclear whether the metals in the sediment are taken up by plants and animals in the stream. The researchers tested the macroinvertebrate residents (midge flies and dragonflies) at the outlet of the contaminated stream, and found that, as of yet, there is no disparity in the levels of arsenic or lead.

"Historic farmlands in New Hampshire and elsewhere are increasingly being developed," says Renshaw. "While the arsenic and lead in the soils of old orchards is essentially immobile as long as the land is not disturbed, our work suggests that the development of these lands can inadvertently mobilize these metals toward bodies of water. Communities in these areas may want to ensure additional precautions are taken to control erosion when old orchard lands are disturbed in order to reduce the potential for contamination of nearby surface waters."

Sue Knapp | EurekAlert!
Further information:
http://www.Dartmouth.edu

More articles from Agricultural and Forestry Science:

nachricht Energy crop production on conservation lands may not boost greenhouse gases
13.03.2017 | Penn State

nachricht How nature creates forest diversity
07.03.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>