Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tracking food products from farm to the fork

07.02.2006
A prototype system designed to help consumers, farmers and other interested parties trace the geographic origin of food at all stages of production from ‘farm to fork’ - storage, processing and distribution - has been developed by researchers.

In the wake of successive outbreaks of food-borne disease in the past decade (think mad cow disease, E.coli, salmonella, etc) and the current fear over the possible spread of avian flu, public demand for tighter safeguards on the entire food production chain has never been greater.

“The certification of the origin of food products is a vital issue for Europe in the ongoing discussions with the World Trade Organisation,” explains Michel Debord, project coordinator. “Americans in particular prefer to certify the quality of a product according to its brand and attach no real importance to its origin. European consumers, by contrast, want to know where the food that they eat has come from.”

The concept behind GeoTraceAgri is to take advantage of advances in information and communication technology, satellite imaging and mapping to enable clear and precise tracking of food products that are accessible in real-time to relevant parties.

Indicating the origin of agricultural products

“The ultimate goal of GeoTraceAgri was to develop indicators of geotraceability that enable users to locate precisely the origin of agricultural products,” he says. “The advantage of this type of system is that the geographical certification is objective and verifiable, and can be viewed on the Internet using secure geoportals that have been specifically developed for this purpose.”

The first stage of the project involved defining the indicators and determining the indicator classes relevant to geographical traceability in agriculture. The various geographical scales taken into consideration included information such as the plot, field, catchments and region for which the origin of the product is certified (Region d’Appellation Contrôlée or AOC).

The next stages involved constructing a reference system for geographical traceability for selected agricultural sectors and developing the computer infrastructure needed to ensure the geographical traceability of the agricultural products.

The final prototype – built using a variety of different platforms, languages, databases, mapping engines, and spatial processing libraries – reflects both the diverse nature of the project and the wide range of expertise that the consortium partners brought to the table.

Improving management

While there has been a long-standing need for such traceability, the GeoTraceAgri project is in the happy position of coming to fruition at just the right time. Since January 2005, the new Common Agricultural Policy (CAP) requires farmers and producers in EU Member States to guarantee the quality of their produce, and to set up means of traceability using a single system of declaration.

A key aspect of the declaration system is the Land Parcel Identification System (LPIS), which utilises orthophotoplans – basically aerial photographs and high precision satellite images that are digitally rendered to extract as much meaningful spatial information as possible. A unique number is given to each land parcel to provide a unique identification in space and time. This information is then updated regularly to monitor the evolution of the land cover and the management of the crops.

The result is a growing database of European-wide geolocalised information that reinforces the basis of the concept of geotraceability and provides a firm platform for future versions of the GeoTraceAgri prototype, says Debord.

“The main benefit is that geotraceability is fully objective and certifies the declaration of origin made by the farmer or producer. Today more than 80 per cent of existing data can be geolocalised and thus visualised on the Internet using geoportals such as Google Earth,” he says.

Although GeoTraceAgri has officially completed its project duration, the real story of geotraceability is just beginning, believes Michel Debord. CDER, one of the partners involved in the GeoTraceAgri consortium, has been delegated the task of developing the prototype into a full-blown commercial product.

Also keen to build on the success of GeoTraceAgri, the European Commission gave the green light for a follow-up project, GTIS CAP (GeoTraceability Integrated System for the Common Agricultural Policy). The aim of GTIS CAP was to define and validate an integrated information system that will serve both the European and national administrative bodies in charge of the CAP and the producers of vegetal products for consumers and for livestock.

Tara Morris | alfa
Further information:
http://istresults.cordis.lu/index.cfm/section/news/tpl/article/BrowsingType/Features/ID/80373

More articles from Agricultural and Forestry Science:

nachricht Energy crop production on conservation lands may not boost greenhouse gases
13.03.2017 | Penn State

nachricht How nature creates forest diversity
07.03.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>