Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tracking food products from farm to the fork

07.02.2006
A prototype system designed to help consumers, farmers and other interested parties trace the geographic origin of food at all stages of production from ‘farm to fork’ - storage, processing and distribution - has been developed by researchers.

In the wake of successive outbreaks of food-borne disease in the past decade (think mad cow disease, E.coli, salmonella, etc) and the current fear over the possible spread of avian flu, public demand for tighter safeguards on the entire food production chain has never been greater.

“The certification of the origin of food products is a vital issue for Europe in the ongoing discussions with the World Trade Organisation,” explains Michel Debord, project coordinator. “Americans in particular prefer to certify the quality of a product according to its brand and attach no real importance to its origin. European consumers, by contrast, want to know where the food that they eat has come from.”

The concept behind GeoTraceAgri is to take advantage of advances in information and communication technology, satellite imaging and mapping to enable clear and precise tracking of food products that are accessible in real-time to relevant parties.

Indicating the origin of agricultural products

“The ultimate goal of GeoTraceAgri was to develop indicators of geotraceability that enable users to locate precisely the origin of agricultural products,” he says. “The advantage of this type of system is that the geographical certification is objective and verifiable, and can be viewed on the Internet using secure geoportals that have been specifically developed for this purpose.”

The first stage of the project involved defining the indicators and determining the indicator classes relevant to geographical traceability in agriculture. The various geographical scales taken into consideration included information such as the plot, field, catchments and region for which the origin of the product is certified (Region d’Appellation Contrôlée or AOC).

The next stages involved constructing a reference system for geographical traceability for selected agricultural sectors and developing the computer infrastructure needed to ensure the geographical traceability of the agricultural products.

The final prototype – built using a variety of different platforms, languages, databases, mapping engines, and spatial processing libraries – reflects both the diverse nature of the project and the wide range of expertise that the consortium partners brought to the table.

Improving management

While there has been a long-standing need for such traceability, the GeoTraceAgri project is in the happy position of coming to fruition at just the right time. Since January 2005, the new Common Agricultural Policy (CAP) requires farmers and producers in EU Member States to guarantee the quality of their produce, and to set up means of traceability using a single system of declaration.

A key aspect of the declaration system is the Land Parcel Identification System (LPIS), which utilises orthophotoplans – basically aerial photographs and high precision satellite images that are digitally rendered to extract as much meaningful spatial information as possible. A unique number is given to each land parcel to provide a unique identification in space and time. This information is then updated regularly to monitor the evolution of the land cover and the management of the crops.

The result is a growing database of European-wide geolocalised information that reinforces the basis of the concept of geotraceability and provides a firm platform for future versions of the GeoTraceAgri prototype, says Debord.

“The main benefit is that geotraceability is fully objective and certifies the declaration of origin made by the farmer or producer. Today more than 80 per cent of existing data can be geolocalised and thus visualised on the Internet using geoportals such as Google Earth,” he says.

Although GeoTraceAgri has officially completed its project duration, the real story of geotraceability is just beginning, believes Michel Debord. CDER, one of the partners involved in the GeoTraceAgri consortium, has been delegated the task of developing the prototype into a full-blown commercial product.

Also keen to build on the success of GeoTraceAgri, the European Commission gave the green light for a follow-up project, GTIS CAP (GeoTraceability Integrated System for the Common Agricultural Policy). The aim of GTIS CAP was to define and validate an integrated information system that will serve both the European and national administrative bodies in charge of the CAP and the producers of vegetal products for consumers and for livestock.

Tara Morris | alfa
Further information:
http://istresults.cordis.lu/index.cfm/section/news/tpl/article/BrowsingType/Features/ID/80373

More articles from Agricultural and Forestry Science:

nachricht Microjet generator for highly viscous fluids
13.02.2018 | Tokyo University of Agriculture and Technology

nachricht Sweet route to greater yields
08.02.2018 | Rothamsted Research

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>