Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Anyway You Slice It, Tomatoes Cut Through Drought with New Gene

14.12.2005


New tomato research has its roots in yielding more food to feed more people, according to Dr. Kendal Hirschi about results announced today.



His team’s study appears in today’s Proceedings of the National Academy of Sciences.

The team made tomato plants over-express the gene, AVP1, which resulted in stronger, larger root systems and that resulted in roots making better use of limited water, said Hirschi, a researcher at Texas A&M University’s Vegetable and Fruit Improvement Center and Baylor’s College of Medicine.


"The gene gave us a better root system, and the root system could then take the adjustment to drought stress better and thus grow better," Hirschi said of the paper which details "a strategy to engineer drought-resistant crop plants."

For example, regular or control tomatoes used in the experiment suffered irreversible damage after five days without water, as opposed to the transgenic tomatoes, which began to show signs of damage after 13 days but rebounded completely as soon as they were watered, according to the study.

"This technology could ultimately be applied to all crops because it involves the over-expression of a gene found in all plants," said Dr. Roberto Gaxiola, a plant biologist at the University of Connecticut and the lead author of the study. "It has the potential to revolutionize agriculture and improve food production worldwide by addressing an increasing global concern: water scarcity."

Gaxiola’s findings regarding the use of AVP1 in Arabidopsis to create hardier, more drought resistant plants were published in the journal Science in October, but the study described in the proceedings marks the first time the enhanced gene has been inserted in a commercially viable crop, he said.

The paper notes that drought conditions throughout the world each year carve out a huge amount of food production.

To overcome food shortages, the authors suggest, "it will be necessary to increase the productivity of land already under cultivation and to regain the use of arable land lost to scarce water supplies."

Hirschi and Gaxiola worked with Dr. Sunghun Park, also of the Vegetable and Fruit Improvement Center.

"Our center is good at moving genes into the different plants," Hirschi said. "Dr. Park’s job was to move this gene into the tomato."

Hirschi, who’s main research focus is "boosting nutrients in plants to make them more nutritional for children," said the study now may be tried on other crops. Gaxiola said he already has additional studies under way to demonstrate how this technology applies to other commercial crops.

Kathleen Phillips | EurekAlert!
Further information:
http://www.pnas.org/
http://www.tamu.edu

More articles from Agricultural and Forestry Science:

nachricht Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli
26.04.2017 | University of the Basque Country

nachricht New data unearths pesticide peril in beehives
21.04.2017 | Cornell University

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>