Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Anyway You Slice It, Tomatoes Cut Through Drought with New Gene

14.12.2005


New tomato research has its roots in yielding more food to feed more people, according to Dr. Kendal Hirschi about results announced today.



His team’s study appears in today’s Proceedings of the National Academy of Sciences.

The team made tomato plants over-express the gene, AVP1, which resulted in stronger, larger root systems and that resulted in roots making better use of limited water, said Hirschi, a researcher at Texas A&M University’s Vegetable and Fruit Improvement Center and Baylor’s College of Medicine.


"The gene gave us a better root system, and the root system could then take the adjustment to drought stress better and thus grow better," Hirschi said of the paper which details "a strategy to engineer drought-resistant crop plants."

For example, regular or control tomatoes used in the experiment suffered irreversible damage after five days without water, as opposed to the transgenic tomatoes, which began to show signs of damage after 13 days but rebounded completely as soon as they were watered, according to the study.

"This technology could ultimately be applied to all crops because it involves the over-expression of a gene found in all plants," said Dr. Roberto Gaxiola, a plant biologist at the University of Connecticut and the lead author of the study. "It has the potential to revolutionize agriculture and improve food production worldwide by addressing an increasing global concern: water scarcity."

Gaxiola’s findings regarding the use of AVP1 in Arabidopsis to create hardier, more drought resistant plants were published in the journal Science in October, but the study described in the proceedings marks the first time the enhanced gene has been inserted in a commercially viable crop, he said.

The paper notes that drought conditions throughout the world each year carve out a huge amount of food production.

To overcome food shortages, the authors suggest, "it will be necessary to increase the productivity of land already under cultivation and to regain the use of arable land lost to scarce water supplies."

Hirschi and Gaxiola worked with Dr. Sunghun Park, also of the Vegetable and Fruit Improvement Center.

"Our center is good at moving genes into the different plants," Hirschi said. "Dr. Park’s job was to move this gene into the tomato."

Hirschi, who’s main research focus is "boosting nutrients in plants to make them more nutritional for children," said the study now may be tried on other crops. Gaxiola said he already has additional studies under way to demonstrate how this technology applies to other commercial crops.

Kathleen Phillips | EurekAlert!
Further information:
http://www.pnas.org/
http://www.tamu.edu

More articles from Agricultural and Forestry Science:

nachricht Plasma-zapping process could yield trans fat-free soybean oil product
02.12.2016 | Purdue University

nachricht New findings about the deformed wing virus, a major factor in honey bee colony mortality
11.11.2016 | Veterinärmedizinische Universität Wien

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>