Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Robot weeds fields

16.09.2005


Weeding is a major problem for ecological growers since it is both expensive and time-consuming. New robot technology may have the solution. In a new dissertation, Björn Åstrand, from Halmstad University in Sweden, presents how weeds can be removed mechanically -with the fully automated robot Lukas.



In ecological cultivation, weeding is performed manually, entailing not only economic burdens for many growers but also logistic ones -it’s hard to find people willing to do this work, and many growers therefore have to limit their production.

“For an ecological grower of beets, weeding can cost about SEK 10,000 per hectare. With robot technology we estimate that these costs can be cut in half. In the long term this technology would also mean major environmental benefits by ultimately replacing chemical herbicides in traditional cultivation,” says Björn Åstrand, who works at the School of Information Science, Computer and Electrical Engineering at Halmstad University. He is formally a doctoral candidate at Chalmers University of Technology in Göteborg.


Together with associates at Halmstad University, he has developed and constructed a fully automated robot, named Lukas. The robot can automatically make its way around a field and remove weeds both between cultivation rows and in the rows, between plants. The method was developed for sugar beets, but it works in principle for all vegetables that are grown in rows, like lettuce, cauliflower, and carrots.

The robot functions with the aid of computerized image processing. An infrared camera is installed on the robot to read the rows. The images are processed using a specially developed computer program that in turn steers the robot’s wheels and weeding tool.

Within the rows, the robot distinguishes between crop and weeds with the aid of another camera, which takes color images, and a program that analyzes the color and form of the plants. This method works extremely well under certain conditions, but the system is susceptible to differences in the appearance of crops. The appearance can differ considerably within a field and can be influenced by factors such as rain, wind, and diseases.

“I have therefore developed another technique that also reads the cultivation patterns of crops. Since crops are planted at regular intervals, such as fifteen centimeters apart, the computer can determine what is a weed and what isn’t. By combining these different methods we achieve a robust technology,” he says.

There is some fine tuning to be done before the robot is ready to be marketed. One remaining challenge is how to deal with cases where crop and weed are so close together that they have become intertwined.

Lukas the Robot has been tested and developed in collaboration with ecological beet growers in the province of Halland.

Björn Åstrand publically defended his dissertation titled Vision-based perception for mechatronic weed control on September 8, 2005.

Ida Lövstål | alfa
Further information:
http://www.hh.se

More articles from Agricultural and Forestry Science:

nachricht New gene for atrazine resistance identified in waterhemp
24.02.2017 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

nachricht Researchers discover a new link to fight billion-dollar threat to soybean production
14.02.2017 | University of Missouri-Columbia

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>