Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

U of MN researchers develop tests for devastating cattle disease

30.08.2005


More rapid and accurate test results may translate to better quality products



Researchers at the University of Minnesota, working in collaboration with scientists at the USDA, have used genomic information to develop tests that can rapidly detect and differentiate the bacteria that causes Johne’s disease, a chronic wasting disease found in cattle and other ruminant animals such as sheep, goats and deer. This research, scheduled to be published in the Aug. 30 issue of the Proceedings of the National Academy of Sciences, also provides the foundation for a better understanding of the Johne’s disease process and the design of vaccines to prevent infection.

Johne’s disease is devastating to the United States dairy industry, costing about $200 million per year due to reduced milk production. Estimates indicate that the disease is present in approximately 25 percent of Minnesota’s dairy herds. Because the bacterium that causes Johne’s disease, Mycobacterium avium subspecies paratuberculosis, is slow growing in the laboratory, previous tests often took between 6 and 18 weeks to process. The current study shows how genomic information may be used to develop highly specific, sensitive, and rapid tests for the detection of infected animals.


These new tests, which enable detection of the bacterium in fecal matter or milk, can be completed in 72 hours or less with an accuracy that was not possible without knowledge of the complete genome of the bacterium. Since animals shed the bacteria in their milk, faster diagnosis will likely help monitor and improve the quality of dairy foods.

"Since the results of this new test are available much sooner, infected animals can be identified and isolated more quickly, thereby providing an opportunity to minimize economic losses to the herd, and breaking the chain of transmission from animal to animal," said Vivek Kapur, BVSc., Ph.D., principal investigator, faculty member of the University’s Medical School and College of Veterinary Medicine, and director of the Biomedical Genomics Center. In 2003, Kapur and his colleagues at the University of Minnesota were also awarded one of the largest research grants by the USDA to form a national consortium to study Johne’s disease in cattle.

Mycobacterium avium subspecies paratuberculosis is also implicated as a factor in Crohn’s disease, an inflammatory bowel disease in humans. Infection with this bacterium in humans and all animals is generally believed to occur at an early age, with clinical manifestations of the disease only showing up after several years. In the future, researchers are likely to be able to use this information to work on a test to detect these bacteria in blood or tissue of patients with Crohn’s disease and ulcerative colitis.

"This research both advances knowledge of the basic science issues surrounding the disease as well as applies that knowledge for immediate benefits to animal and potentially human, health," said Sagarika Kanjilal, associate professor of medicine, and a co-author of the paper.

Sara E. Buss | EurekAlert!
Further information:
http://www.umn.edu

More articles from Agricultural and Forestry Science:

nachricht Energy crop production on conservation lands may not boost greenhouse gases
13.03.2017 | Penn State

nachricht How nature creates forest diversity
07.03.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>