Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Our ancestor’s bones are contaminating animal feeds!

16.08.2005


Bone splinters from land animals (left) and from molasses shreds (right) in polarised light in the microscope (200x magnif.). Clearly visible the characteristic "lacunes"
Fotos: R. Modi, University of Hohenheim


Soil adhering tuber crops
Fotos: E. Schnug, FAL Braunschweig


Results of an experts round table "decomposition behaviour of animal residues in soil" at the Institute of Plant Nutrition and Soil Science, Federal Agricultural Research Centre (FAL), Braunschweig, Germany.

As a result of the BSE-crisis, any feed for livestock must be "free" of anything of animal origin. This EU-decree lasts until 2006 and should prevent "MBM" (Meat Bone Meal) from reaching the feed trough. MBM means the heated, dried and ground remains of animal slaughter waste. In themselves these amount to about a third of total animal slaughter waste, which has to be disposed of, and also includes blood, feathers and other components of animal bodies which are not usually included in feedstuffs. But which, for hygiene reasons, still need to be disposed of. MBM can still be used as a fertiliser, but only MBM of category III, which has to be produced out of non-commercialised or non-marketable material that is classed as "fit for human consumption".

Checks are made for bone fragments and other animal components, like muscle fibres, hair or feathers in feedstuff samples. These microscopic tests check to identify bones by their characteristic surface patterns, so called "lacuna" (picture 1). If only one tiny identifiable bone splinter is found in a feedstuff, an unauthorised admixture of animal components will be assumed and the whole part will have to be destroyed ("zero tolerance"). This happened on 23rd November 2004 in Ireland, where the authorities blocked the import of 1.645 tons of German feedstuff derived from sugar beet pulp after finding bone fragments. In the immediate aftermath caused by the RASFF (Rapid Alert System for Food and Feed) similar samples were scrutinised in Germany and bone fragments were found "not always but more and more often".



Against this background, experts met and discussed the origin and detection of bone fragments in field crops at a meeting in the Institute of Plant Nutrition and Soil Science, Federal Agricultural Research Centre (FAL), Braunschweig, Germany.

The remains of animal bodies contain organic (soft tissue, cartilage, horn, hair) and mineral (bones) components. When in the soil, the organic components are almost completely decomposed in 1-2 years (soft tissue), and slightly longer - to 5-8 years for horn and hair, bones remain for far longer periods. Essentially this duration is dependent on the acidity (pH-value) and on the moisture content of the soil. Bones and bone fragments are a normal component of soils, they descend from perished or killed creatures, for example during tilling and harvesting, remains of the predators "meals" and excrements of these predators (for example foxes and birds of prey).

In soils with a pH-value ? 6, there is no appreciable decomposition of bone material in the soil for several hundred years. In lime containing soils bones survive for unlimited periods: Scientists at Goettingen University estimated the total inventory of bones at 9-98 tons per ha in a 0-30cm depth in three quarters of the soils investigated by them. The amounts of MBM accumulating because of the present feeding prohibition represent a considerable waste problem throughout Europe. This makes the use of fertilisers containing his material attractive, because the price of disposal is approx. 200 EUR for burning. The amounts of bones from MBM-fertilising at a typical application of 2 tons of MBM per ha spreads the equivalent amount of bones per square meter of soil as 10 mice carcasses (approx. 15 g).

Bone material can reach the food chain out of the agricultural soils by taking in animals with the crop material or by the external sticking or by soil material grown into tubers (picture 2). The German experts agreed that neither using the microscopic method prescribed by the EU as a standard measure, nor with the latest molecular biological measures (PCR, Polymerase Chain Reaction) is it possible to clearly determine the identity, origin and age of bone fragments in soils and field crops.

As a result the scientists concluded that because of the ubiquitous occurrence of bones in the soils and independent of the use of bones containing fertilisers (for example MBM) with a high probability, bone material can be detected in all field and forage crops resulting from soil adhesion. They further conclude that the Official testing method and especially the zero tolerance of bones in feedstuffs, and the conditions on the use of MBM for fertilising purposes need urgently re-examining.

For further details: Prof. Dr. Dr. Ewald Schnug, Federal Agricultural Research Centre (FAL), Institute for Plant Nutrition and Soil Science, Bundesallee 50, 38116 Braunschweig, E-Mail: pb@fal.de

Margit Fink | idw
Further information:
http://www.idw-online.de/pages/de/news99437
http://www.fal.de

More articles from Agricultural and Forestry Science:

nachricht New data unearths pesticide peril in beehives
21.04.2017 | Cornell University

nachricht New rice fights off drought
04.04.2017 | RIKEN

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>