Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


UA Scientists Help Create Spacecraft That Think For Themselves


There’s nothing worse than a satellite that can’t make decisions.

Rather than organizing data, it simply spews out everything it collects, swamping scientists with huge amounts of information. It’s like getting a newspaper with no headlines or section pages in which all the stories are strung together end-to-end.

Researchers at the University of Arizona (UA), Arizona State University (ASU) and the Jet Propulsion Laboratory (JPL) are working to solve this problem by developing machine-learning and pattern-recognition software. This smart software can be used on all kinds of spacecraft, including orbiters, landers and rovers.

Scientists currently are developing this kind of software for NASA’s EO-1 satellite. The smart software allows the satellite to organize data so it sends back the most timely news first, while holding back less-timely data for later transmission.

Although the project, called the Autonomous Sciencecraft Experiment (ASE), is still in the test and development stage, software created by UA hydrologists has already detected flooding on Australia’s Diamantina River.

"We had ordered some images from the satellite to test our software in the lab," said Felipe Ip, a Ph.D. student in UA’s Hydrology and Water Resources (HWR) Department. "We didn’t know the Diamantina River was flooding, but when we started running the images through our software, it told us, ’Hey, we’ve got a flood here.’ We were delighted because that’s just what it’s supposed to do."

While Ip, under the direction of HWR researchers James Dohm and Victor Baker, is developing the flood-detection software for EO-1, JPL team members are creating similar software to detect volcanic activity and ASU researchers are working on software to find changes in ice fields.

The flood-detection software compares images from the satellite’s cameras with images stored in its computer memory. If the rivers are not flooding and images come close to matching, the satellite remains silent. But if the satellite’s computer finds significant differences, it takes more photos and notifies scientists.

UA hydrologists developed the software by comparing satellite observations with on-site observations at Tucson Water’s 11 recharge basins. The basins are part of the Central Avra Valley Storage and Recovery Project (CAVSARP) west of Tucson.

The basins are filled with water that flows across the desert from the Colorado River to Tucson via the Central Arizona Project canal. The water percolates into the ground where it is stored in a natural underground aquifer. The large basins are routinely dried out so they don’t become sealed like a typical pond or lake.

The next stage of testing comes in July, when the flood-detection software will fly aboard EO-1 in nearly full autonomous mode.

While the short-term goal is to record transient events, such as volcanic eruptions, floods and changes in ice fields on Earth, ASE software will eventually allow scientists to detect, map out, and study similar events throughout the solar system.

This could include activity on Mars that might indicate water produced by springs. On Jupiter’s moons, the software could be used to detect volcanic eruptions on Io or cracking ice sheets on Europa. Scientists also could use the software to study changes in Saturn’s rings or the formation of jets on comets.

"By using smart spacecraft, we won’t miss short-term events such as floods, dust storms, and volcanic eruptions," Ip said. "Finally, instead of sifting through thousands of images, I can actually get some sleep at night, knowing that a smart robot is on alert twenty-four-seven."

The ASE project is funded by NASA’s New Millennium Program, which focuses on testing exciting new technologies in space.

Ed Stiles | University of Arizona
Further information:

More articles from Agricultural and Forestry Science:

nachricht Unique communication strategy discovered in stem cell pathway controlling plant growth
23.03.2018 | Cold Spring Harbor Laboratory

nachricht “How trees coexist” – new findings from biodiversity research published in Nature Communications
22.03.2018 | Technische Universität Dresden

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>