Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UA Scientists Help Create Spacecraft That Think For Themselves

24.06.2004


There’s nothing worse than a satellite that can’t make decisions.

Rather than organizing data, it simply spews out everything it collects, swamping scientists with huge amounts of information. It’s like getting a newspaper with no headlines or section pages in which all the stories are strung together end-to-end.

Researchers at the University of Arizona (UA), Arizona State University (ASU) and the Jet Propulsion Laboratory (JPL) are working to solve this problem by developing machine-learning and pattern-recognition software. This smart software can be used on all kinds of spacecraft, including orbiters, landers and rovers.



Scientists currently are developing this kind of software for NASA’s EO-1 satellite. The smart software allows the satellite to organize data so it sends back the most timely news first, while holding back less-timely data for later transmission.

Although the project, called the Autonomous Sciencecraft Experiment (ASE), is still in the test and development stage, software created by UA hydrologists has already detected flooding on Australia’s Diamantina River.

"We had ordered some images from the satellite to test our software in the lab," said Felipe Ip, a Ph.D. student in UA’s Hydrology and Water Resources (HWR) Department. "We didn’t know the Diamantina River was flooding, but when we started running the images through our software, it told us, ’Hey, we’ve got a flood here.’ We were delighted because that’s just what it’s supposed to do."

While Ip, under the direction of HWR researchers James Dohm and Victor Baker, is developing the flood-detection software for EO-1, JPL team members are creating similar software to detect volcanic activity and ASU researchers are working on software to find changes in ice fields.

The flood-detection software compares images from the satellite’s cameras with images stored in its computer memory. If the rivers are not flooding and images come close to matching, the satellite remains silent. But if the satellite’s computer finds significant differences, it takes more photos and notifies scientists.

UA hydrologists developed the software by comparing satellite observations with on-site observations at Tucson Water’s 11 recharge basins. The basins are part of the Central Avra Valley Storage and Recovery Project (CAVSARP) west of Tucson.

The basins are filled with water that flows across the desert from the Colorado River to Tucson via the Central Arizona Project canal. The water percolates into the ground where it is stored in a natural underground aquifer. The large basins are routinely dried out so they don’t become sealed like a typical pond or lake.

The next stage of testing comes in July, when the flood-detection software will fly aboard EO-1 in nearly full autonomous mode.

While the short-term goal is to record transient events, such as volcanic eruptions, floods and changes in ice fields on Earth, ASE software will eventually allow scientists to detect, map out, and study similar events throughout the solar system.

This could include activity on Mars that might indicate water produced by springs. On Jupiter’s moons, the software could be used to detect volcanic eruptions on Io or cracking ice sheets on Europa. Scientists also could use the software to study changes in Saturn’s rings or the formation of jets on comets.

"By using smart spacecraft, we won’t miss short-term events such as floods, dust storms, and volcanic eruptions," Ip said. "Finally, instead of sifting through thousands of images, I can actually get some sleep at night, knowing that a smart robot is on alert twenty-four-seven."

The ASE project is funded by NASA’s New Millennium Program, which focuses on testing exciting new technologies in space.

Ed Stiles | University of Arizona
Further information:
http://www.arizona.edu
http://www.u.arizona.edu/~filipe/ASEanimation/
http://www.u.arizona.edu/~filipe/ASEanimation/

More articles from Agricultural and Forestry Science:

nachricht Energy crop production on conservation lands may not boost greenhouse gases
13.03.2017 | Penn State

nachricht How nature creates forest diversity
07.03.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>