Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UA Scientists Help Create Spacecraft That Think For Themselves

24.06.2004


There’s nothing worse than a satellite that can’t make decisions.

Rather than organizing data, it simply spews out everything it collects, swamping scientists with huge amounts of information. It’s like getting a newspaper with no headlines or section pages in which all the stories are strung together end-to-end.

Researchers at the University of Arizona (UA), Arizona State University (ASU) and the Jet Propulsion Laboratory (JPL) are working to solve this problem by developing machine-learning and pattern-recognition software. This smart software can be used on all kinds of spacecraft, including orbiters, landers and rovers.



Scientists currently are developing this kind of software for NASA’s EO-1 satellite. The smart software allows the satellite to organize data so it sends back the most timely news first, while holding back less-timely data for later transmission.

Although the project, called the Autonomous Sciencecraft Experiment (ASE), is still in the test and development stage, software created by UA hydrologists has already detected flooding on Australia’s Diamantina River.

"We had ordered some images from the satellite to test our software in the lab," said Felipe Ip, a Ph.D. student in UA’s Hydrology and Water Resources (HWR) Department. "We didn’t know the Diamantina River was flooding, but when we started running the images through our software, it told us, ’Hey, we’ve got a flood here.’ We were delighted because that’s just what it’s supposed to do."

While Ip, under the direction of HWR researchers James Dohm and Victor Baker, is developing the flood-detection software for EO-1, JPL team members are creating similar software to detect volcanic activity and ASU researchers are working on software to find changes in ice fields.

The flood-detection software compares images from the satellite’s cameras with images stored in its computer memory. If the rivers are not flooding and images come close to matching, the satellite remains silent. But if the satellite’s computer finds significant differences, it takes more photos and notifies scientists.

UA hydrologists developed the software by comparing satellite observations with on-site observations at Tucson Water’s 11 recharge basins. The basins are part of the Central Avra Valley Storage and Recovery Project (CAVSARP) west of Tucson.

The basins are filled with water that flows across the desert from the Colorado River to Tucson via the Central Arizona Project canal. The water percolates into the ground where it is stored in a natural underground aquifer. The large basins are routinely dried out so they don’t become sealed like a typical pond or lake.

The next stage of testing comes in July, when the flood-detection software will fly aboard EO-1 in nearly full autonomous mode.

While the short-term goal is to record transient events, such as volcanic eruptions, floods and changes in ice fields on Earth, ASE software will eventually allow scientists to detect, map out, and study similar events throughout the solar system.

This could include activity on Mars that might indicate water produced by springs. On Jupiter’s moons, the software could be used to detect volcanic eruptions on Io or cracking ice sheets on Europa. Scientists also could use the software to study changes in Saturn’s rings or the formation of jets on comets.

"By using smart spacecraft, we won’t miss short-term events such as floods, dust storms, and volcanic eruptions," Ip said. "Finally, instead of sifting through thousands of images, I can actually get some sleep at night, knowing that a smart robot is on alert twenty-four-seven."

The ASE project is funded by NASA’s New Millennium Program, which focuses on testing exciting new technologies in space.

Ed Stiles | University of Arizona
Further information:
http://www.arizona.edu
http://www.u.arizona.edu/~filipe/ASEanimation/
http://www.u.arizona.edu/~filipe/ASEanimation/

More articles from Agricultural and Forestry Science:

nachricht Climate change, population growth may lead to open ocean aquaculture
05.10.2017 | Oregon State University

nachricht New machine evaluates soybean at harvest for quality
04.10.2017 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>