Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Why does an anti-anthrax drug kill plants too?

12.05.2004


Scientists at the John Innes Centre (JIC), Norwich have today reported that a very successful antibiotic, which is harmless to humans but lethal to most bacteria, also kills plants. They have found that an enzyme, which is an important target for several families of antibiotics and was thought to exist only in bacteria, is also present in plants. The discovery sheds further light on plant evolution and highlights a potential area for development of new herbicides, while it has no significance with regard to the medical use and efficacy of the antibiotic. The discovery is reported online and in the latest volume of the international scientific journal Proceedings of the National Academy of Sciences, USA.



“Our interest is in the structure of DNA and in particular in an enzyme called DNA gyrase, which is crucial for maintaining the structure of the DNA molecule in bacteria” says Professor Tony Maxwell (Head of Biological Chemistry at JIC). “The antibiotic ciprofloxacin (Cipro), made famous in 2001 during the anthrax attacks in the US, targets DNA gyrase which, until now, we thought was a bacterial ‘Achilles heel’ because it had only been found in bacteria. However, we have now discovered that plants are sensitive to Cipro and that is because DNA gyrase is also important in plants”.

Working with the common weed Thale Cress (Arabidopsis thaliana) Dr. Melisa Wall, a member of Prof. Maxwell’s team at JIC, found DNA gyrase in both the chloroplasts and mitochondria in plant cells. These tiny structures (called organelles) are responsible for carrying out photosynthesis and respiration respectively. Scientists think that organelles originated from bacteria that were able to live in plant cells and over evolutionary time they eventually became highly specialised to perform particular functions for the cells they were living in. The fact that the organelles still use DNA gyrase is an echo of their distant past as free-living bacteria.


Plants manage their DNA in a very different way from bacteria and have no use for DNA gyrase. Yet the relationship between the organelles and the plant cell has become so sophisticated and intimate that the genes encoding DNA gyrase are actually present in the DNA molecule of the plant nucleus, not in the organelles themselves. When the DNA gyrase enzyme is produced in the plant cell it is tagged with a fragment of protein that directs it to the appropriate organelle, where it carries out its function of DNA maintenance.

“The discovery that Cipro can kill plants raises the possibility of developing new herbicides based on the structure of Cipro and other drugs that target DNA gyrase” says Dr Wall. “Cipro kills bacteria very effectively but has low animal toxicity. We are now studying the DNA gyrases found in plants and bacteria to see if we can exploit differences between them to selectively kill plants while leaving other organisms, especially bacteria, unaffected”.

Ray Mathias | alfa
Further information:
http://jic.ac.uk

More articles from Agricultural and Forestry Science:

nachricht New gene for atrazine resistance identified in waterhemp
24.02.2017 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

nachricht Researchers discover a new link to fight billion-dollar threat to soybean production
14.02.2017 | University of Missouri-Columbia

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>